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Abstract. Knowledge graph embedding models (KGEMs) are used for
various tasks related to knowledge graphs (KGs), including link predic-
tion. They are trained with loss functions that consider batches of true
and false triples. However, different kinds of false triples exist and recent
works suggest that they should not be valued equally, leading to spe-
cific negative sampling procedures. In line with this recent assumption,
we posit that negative triples that are semantically valid w.r.t. signa-
tures of relations (domain and range) are high-quality negatives. Hence,
we enrich the three main loss functions for link prediction such that all
kinds of negatives are sampled but treated differently based on their
semantic validity. In an extensive and controlled experimental setting,
we show that the proposed loss functions systematically provide satis-
fying results which demonstrates both the generality and superiority of
our proposed approach. In fact, the proposed loss functions (1) lead to
better MRR and Hits@10 values, and (2) drive KGEMs towards better
semantic correctness as measured by the Sem@K metric. This highlights
that relation signatures globally improve KGEMs, and thus should be
incorporated into loss functions. Domains and ranges of relations being
largely available in schema-defined KGs, this makes our approach both
beneficial and widely usable in practice.

Keywords: Knowledge Graph Embeddings · Link Prediction · Schema-
based Learning · Loss Functions.

1 Introduction

A knowledge graph (KG) is a collection of triples (h, r, t) where h (head) and t
(tail) are two entities of the graph, and r is a predicate that qualifies the nature of
the relation holding between them. In this work, we do not consider literals. KGs
are inherently incomplete, incorrect, or overlapping and thus major refinement
tasks include entity matching and link prediction [29]. The latter is the focus of
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this paper. Link prediction (LP) aims at completing KGs by leveraging existing
facts to infer missing ones. In the LP task, one is provided with a set of incomplete
triples, where the missing head (resp. tail) needs to be predicted. This amounts
to holding a set of triples where, for each triple, either the head h or the tail t
is missing.

The LP task is often addressed using knowledge graph embedding models
(KGEMs). They represent entities and relations as low-dimensional vectors in
a latent embedding space that preserves as much as possible graph structural
information and graph properties [15]. A plethora of KGEMs has been pro-
posed in the literature. They usually differ w.r.t. their scoring function, i.e. how
they model interactions between entities. Entities and relations embeddings are
learned throughout several epochs, in an optimization process relying on loss
functions. Loss functions aims at maximizing the score output by KGEMs for
positive triples, i.e., triples that exist in the graph, and minimizing the score
of negative triples, i.e., triples that are absent from the graph. A recent seg-
ment of the literature started investigating the influence of negative triples in
the training of KGEMs [17]. Indeed, their generation – called negative sampling
– is usually performed by corrupting true triples, i.e., replacing their head or tail
with another entity randomly chosen in the graph. Enhanced sampling mech-
anisms were then envisioned and, for example, involve selecting entities of the
same type as the entity to replace [17].

The latter proposal comes within the scope of works considering the under-
pinning semantics of KGs as additional information to improve results w.r.t.
the LP task. Over the past few years, semantic information has been incorpo-
rated in various parts of KGEMs, e.g., as mentioned, the negative sampling
procedure [14,18], but also the model itself [6,19,23,28,32], or the loss func-
tion [5,7,10,20]. Existing works proposing to include semantic information into
loss functions showcase promising results. However, they are restricted to spe-
cific loss functions [7,10], or consider ontological axioms [7,20] that do not include
domain and range axioms (or relation signatures) which are widely available in
KGs. Interestingly, such axioms could be leveraged to generate different kinds
of negative triples, i.e., negative triples that respect relation signatures (called
semantically valid) and those that do not (called semantically invalid). Addi-
tionally, to the best of our knowledge, negative triples were only studied in the
sampling procedure, where specific ones are chosen to train on and the others are
discarded. The possibility to sample all kinds of negatives but differently con-
sider them within loss functions was left unassessed. This twofold observation
motivates our first research question:

RQ1 how main loss functions used in LP can incorporate domain and range
constraints to differently consider negative triples based on their semantic
validity?

Precedent work also pointed out the performance gain of incorporating on-
tological information as measured by rank-based metrics such as MRR and
Hits@K [5,7,10,20]. However, while such approaches include semantic informa-
tion as KGEM inputs, the semantic capabilities of the resulting KGEM are
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left unassessed, even though this would provide a fuller picture of its perfor-
mance [11,13]. Hence, our second research question:

RQ2 what is the impact of incorporating relation signatures into loss functions
on the overall KGEM performance?

To address both questions, we propose signature-driven loss functions, i.e.
loss functions containing terms that depend on some background knowledge
(BK) about types of entities and domains and ranges of relations. To broaden
the impact of our approach, our work is concerned with the three most encoun-
tered loss functions in the literature: the pairwise hinge loss (PHL) [3], the 1-N
binary cross-entropy loss (BCEL) [8], and the pointwise logistic loss (PLL) [27]
(further detailed in Section 3). For each of them, we propose a tailored signature-
driven version. The considered BK is available in many schema-defined KGs [9],
which makes these newly introduced loss functions widely usable in practice.
Furthermore, the impact of loss functions is evaluated using both rank-based
metrics and Sem@K [11,13] – a metric that measures the consistency of KGEMs
predictions for the LP task with relation signatures, i.e., the semantic correctness
of predictions.

To summarize, the main contributions of this work are:

– We propose signature-driven versions for the three mostly used loss functions
for the LP task, leveraging BK about relation domains and ranges.

– We evaluate our approach in terms of traditional rank-based metrics, and
also w.r.t. Sem@K, which gives more insight into the benefits of our proposal.

– We show that the designed signature-driven loss functions provide, in most
cases, better performance w.r.t. both rank-based metrics and Sem@K. Con-
sequently, our findings strongly indicate that signature information should
be systematically incorporated into loss functions.

The remainder of the paper is structured as follows. Related work is presented
in Section 2. In Section 3, we detail the signature-driven loss functions proposed
in this work. Dataset descriptions and experimental settings are provided in
Section 4. Key findings are presented in Section 5 and are further discussed
in Section 6. Lastly, Section 7 sums up the main findings and outlines future
research directions.

2 Related Work

This section firstly relates to former contributions that make use of semantic
information to enhance model results regarding the LP task. Emphasis is placed
on how semantic information can be incorporated in the loss functions (Sec-
tion 2.1) – a research avenue which remains relatively unexplored compared to
incorporating semantic information in other parts of the learning process, e.g.
in the negative sampling or in the interaction function. Secondly, a brief back-
ground on the mainstream loss functions is provided (Section 2.2). This is to
help position our contributions w.r.t. the vanilla loss functions used in practice.
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2.1 Semantic-Enhanced Approaches

A significant body of the literature proposes approaches that incorporate seman-
tic information for performing LP with KGEMs, with the purpose of improving
KGEM performance w.r.t. traditional rank-based metrics.

The most straightforward way to do so is to embed semantic information in
the model itself. For instance, AutoETER [23] is an automated type represen-
tation learning mechanism that can be used with any KGEM and that learns
the latent type embedding of each entity. In TaRP [6], type information and
instance-level information are simultaneously considered and encoded as prior
probabilities and likelihoods of relations, respectively. TKRL [32] bridges type
information with hierarchical information: while type information is utilized as
relation-specific constraints, hierarchical types are encoded as projection matri-
ces for entities. TKRL allows entities to have different representations in differ-
ent types. Similarly, in [28], the proposed KGEM allows entities to have different
vector representations depending on their respective types. TransC [19] encodes
each concept of a KG as a sphere and each instance as a vector in the same
semantic space. The relations between concepts and instances (rdf:type), and
the relations between concepts and sub-concepts (rdfs:subClassOf) are based
on the relative distance within this shared semantic space.

A few works incorporate semantic information to constrain the negative sam-
pling (NS) procedure and generate meaningful negative triples [18,14,31]. For
instance, type-constrained negative sampling (TCNS) [18] replaces the head or
the tail of a triple with a random entity belonging to the same type (rdf:type)
as the ground-truth entity. Jain et al. [14] go a step further and use ontological
reasoning to iteratively improve KGEM performance by retraining the model on
inconsistent predictions. It is noteworthy that our approach adopts an orthogo-
nal direction of such works by proposing to sample all kinds of negatives but to
treat them differently in the loss function when training.

A few work actually propose to include semantic information in the learn-
ing and optimization process. In [10], entities embeddings of the same semantic
category are enforced to lie in a close neighborhood of the embedding space. How-
ever, their approach only fits single-type KGs. In addition, the only mainstream
model benchmarked in this work is TransE [3], and only the pairwise hinge loss
is used. Likewise, d’Amato et al. [7] solely consider the pairwise hinge loss, and
their approach is benchmarked w.r.t. to translational models only. Moreover, BK
is injected in the form of equivalentClass, equivalentProperty, inverseOf,
and subClassOf axioms, similarly to [20] who incorporate equivalentProperty
and inverseOf axioms as regularization terms in the loss function. However, the
aforementioned axioms are rarely provided in KGs [9]. Cao et al. [5] propose a
new regularizer called Equivariance Regularizer, which limits overfitting by using
semantic information. However, their approach is data-driven and does not rely
on a schema. In contrast, the approach presented in Section 3 leverages domain
and range constraints which are available in most schema-defined KGs.

Finally, all the aforementioned semantic-driven approaches are only eval-
uated w.r.t.. rank-based metrics. However, semantic-driven approaches would
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benefit from a semantic-oriented evaluation. To the best of our knowledge, the
work around Sem@K [11,12,13] is the only one to provide appropriate tools
for measuring KGEM semantic correctness. Hence, our experiments will also be
evaluated with this metric.

2.2 Loss Functions for the Link Prediction Task

Few works revolve around the influence of loss functions on KGEM perfor-
mance [1,22,21]. Mohamed et al. [22] point out the lack of consideration regarding
the impact of loss functions on KGEM performance. Experimental results pro-
vided in [1] indicate that no loss function consistently provides the best results,
and that it is rather the combination between the scoring and loss functions
that impacts KGEM performance. In particular, some scoring functions better
match with specific loss functions. For instance, Ali et al. show that TransE
can outperform state-of-the-art KGEMs when configured with an appropriate
loss function. Likewise, Mohamed et al. [22] show that the choice of the loss
function significantly influence KGEM performance. Consequently, they provide
an extensive benchmark study of the main loss functions used in the literature.
Namely, their analysis relies on a commonly accepted categorization between
pointwise and pairwise loss functions. The main difference between pointwise
and pairwise loss functions lies in the way the scoring function, the triples, and
their respective labels are considered all together. Under the pointwise approach,
the loss function relies on the predicted scores for triples and their actual label
values, which is usually 1 for positive triple and 0 (or −1) for negative triples.
In contrast, pairwise loss functions are defined in terms of differences between
the predicted score of a true triple and the score of a negative counterpart.

In our approach (Section 3), we consider the three most commonly used loss
functions for performing LP [24]: the pairwise hinge loss (PHL) [3], the 1-N
binary cross-entropy loss (BCEL) [8], and the pointwise logistic loss (PLL) [27].
Their vanilla formulas are recalled in Equations (1), (2), and (3).

LPHL =
∑
t∈T +

∑
t′∈T −

[γ + f(t′)− f(t)]+ (1)

where T , f , and [x]+ denote a batch of triples, the scoring function, and the
positive part of x, respectively. T is further split into a batch of positive triples
T + and a batch of negative triples T −. γ is a configurable margin hyperparam-
eter specifying how much the scores of positive triples should be separated from
the scores of corresponding negative triples.

LBCEL = − 1

|E|
∑
t∈T

ℓ(t) log(f(t)) + (1− ℓ(t)) log(1− f(t)) (2)

where ℓ(t) ∈ {0, 1} denotes the true label of t and T is a batch with all possible
(h, r, ∗). |E| is the number of entities in the KG.

LPLL =
∑
t∈T

log(1 + exp−ℓ(t)·f(t)) (3)
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where ℓ(t) ∈ {−1, 1} denotes the true label of t.

3 Signature-driven Loss Functions

Building on the limits of previous work (Section 2.1), we propose signature-driven
loss functions that extend the three most frequently used loss functions [24] and
leverage BK about domains and ranges of relations, which are provided in many
KGs used in the literature.

The purpose of the proposed loss functions is to distinguish semantically
valid negatives from semantically invalid ones. The former are defined as triples
(h, r, t) respecting both the domain and range of the relation r, i.e.,

type(h) ∩ domain(r) ̸= ∅ ∧ type(t) ∩ range(r) ̸= ∅

whereas the latter violate at least one of the constraints, i.e.

type(h) ∩ domain(r) = ∅ ∨ type(t) ∩ range(r) = ∅.

domain(r) (resp. range(r)) is defined as the expected type as head (resp. tail)
for the relation r. For example, the relation presidentOf expects a Person as
head and a Country as tail. Starting from a positive triple (EmmanuelMacron,
presidentOf, France) which represents a true fact, (BarackObama, presidentOf,
France) and (EmmanuelMacron, presidentOf, Germany) are examples of se-
mantically valid negative triples, whereas (Adidas, presidentOf, France) and
(EmmanuelMacron, presidentOf, Christmas) are examples of semantically in-
valid negative triples. In this work, entities are multi-typed. Therefore, type(e)
returns the set of types (a.k.a. classes) that the entity e belongs to.

We introduce a loss-independent ϵ factor, which is dubbed as the seman-
tic factor and aims at bringing the scores of semantically valid negative triples
closer to the positive ones. This common semantic factor fitting into different
loss functions shows the generality of our approach that can possibly be extended
to other loss functions. Interestingly, this factor also allows to take into account
to some extent the Open World Assumption (OWA) under which KGs are rep-
resented. Under the OWA, triples that are not represented in a KG are either
false or missing positive triples. In traditional training procedures, these triples
are indiscriminately considered negative, which corresponds to the Closed World
Assumption. On the contrary, our proposal considers semantically invalid triples
as true negative while semantically valid triples (and possibly missing positive or
false negative under the OWA) are closer to true positive triples. This assumes
that entity types are complete and correct.

LPHL defined in Equation (1) relies on the margin hyperparameter γ. In-
creasing (resp. descreasing) the value of γ will increase (resp. descrease) the
margin that will be set between the scores of positive and negative triples. How-
ever, this unique γ treats all negative triples indifferently: the same margin will
separate the scores of semantically valid and semantically invalid negative triples
from the score of the positive triple they both originate from. We suggest that



Treat Different Negatives Differently 7

the scores of these two kinds of negative triples should be treated differently.
Hence, our approach redefines LPHL as follows (Equation (4)):

LS
PHL =

∑
t∈T +

∑
t′∈T −

[γ · ℓ(t′) + f(t′)− f(t)]+

where ℓ(t′) =

{
1 if t′ is semantically invalid
ϵ otherwise

(4)

The loss function in Equation (4) now has a superscripted S to make it clear this
is the signature-driven version of the vanilla LPHL as defined in Equation (1).
A choice of ϵ < 1 leads the KGEM to apply a higher margin between scores of
positive and semantically invalid triples than between positive and semantically
valid ones. For a given positive triple, this allows to keep the scores of its seman-
tically valid negative counterparts relatively closer compared to the scores of its
semantically invalid counterparts. Intuitively, when the KGEM outputs wrong
predictions, more of them are still expected to meet the domain and range con-
straints imposed by relations. Thus, wrong predictions are assumed to be more
meaningful, and, in a sense, semantically closer to the ground-truth triple.

LBCEL defined in Equation (2) is adapted to LS
BCEL by redefining the la-

belling function ℓ. In particular, when dealing with a KG featuring typed entities
and providing information about domains and ranges of relations, the labelling
function ℓ is no longer binary. Instead, the labels of semantically valid negative
triples can be fixed to some intermediate value between the label value of positive
triples and of semantically invalid negative triples, which leads to the labelling
function ℓ defined in Equation (5):

ℓ(t′) =

1 if t′ ∈ T +

ϵ if t′ ∈ T − and t′ is semantically valid
0 if t′ ∈ T − and t′ is semantically invalid

(5)

where the semantic factor ϵ is a tunable hyperparameter denoting the label value
of semantically valid negative triples. The intuition underlying the refinement of
the labelling function ℓ is to voluntarily cause some confusion between semanti-
cally valid negative triples and positive triples. By bridging their respective label
values, it is expected that the KGEM will somehow consider the former as “less
negative triples“ and assign them a higher score compared to positive triples.

LPLL defined in Equation (3) could be adapted to LS
PLL similarly to LS

BCEL.
In other words, the labelling function ℓ could also output an intermediate label
value ϵ for semantically valid negative triples. Although this approach provides
very good results in terms of Sem@K values, it does not provide consistently
good results across datasets. Furthermore, obtained results in terms of MRR and
Hits@K can be far below the ones obtained with the vanilla model (see supple-
mentary materials for further details). That is why, here, to treat semantically
valid and invalid negative triples differently, instead of modifying the labelling
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function ℓ, the semantic factor ϵ for LS
PLL defines the probability with which se-

mantically valid negative triples are considered as positive triples and therefore
are labelled the same way. For example, with ϵ = 0.05, at each training epoch
and for each batch, the semantically valid negative triples of the given training
batch will be considered positive with a probability of 5%.

It is noteworthy that our approach can be applied in practice to KGs with or
without types, domains and ranges. Indeed, in the absence of such background
knowledge, our signature-driven loss functions reduce to their respective vanilla
counterparts. Recall that our approach does not focus on negative sampling or
complex negative sample generators such as KBGAN [4], NSCaching [34], and
self-adversarial negative sampling [26]. Although these works are related to ours,
they constrain negative sampling upstream. On the contrary, our approach does
not constrain the sampling of negative triples but rather dynamically distributes
the negative triples into different parts of the loss functions, based on their
semantic validity.

4 Experimental Setting

4.1 Evaluation Metrics

In our experiments, KGEM performance is assessed w.r.t. MRR, Hits@K and
Sem@K, with K = 10. Mean Reciprocal Rank (MRR) corresponds to the
arithmetic mean over the reciprocals of ranks of the ground-truth triples. MRR
is bounded in the [0, 1] interval, where the higher the better. Hits@K accounts
for the proportion of ground-truth triples appearing in the first K top-scored
triples. This metric is bounded in the [0, 1] interval and its values increases with
K, where the higher the better. Sem@K[11,13] accounts for the proportion of
triples that are semantically valid in the first K top-scored triples:

Sem@K =
1

|B|
∑
q∈B

1

K

∑
q′∈SK

q

compatibility(q, q′) (6)

where, given a ground-truth triple q = (h, r, t), SK
q is the list of the top-K can-

didate triples scored by a KGEM (i.e., by predicting the tail for (h, r, ?) or the
head for (?, r, t)). A candidate triple q′ is assessed w.r.t. q by the compatibility
function that checks whether the predicted head (resp. tail) belongs to the do-
main (resp. range) of the relation. In this work, class hierarchies are considered:
if a relation has a given class as domain (resp. range), entities from its subclasses
are considered semantically valid. Sem@K is bounded in the [0, 1] interval.

4.2 Datasets and Models

Even though our approach could be applied in KGs with or without relation sig-
natures, we evaluate our proposal in an ideal experimental setting to precisely
qualify the interest of considering domains and ranges. Firstly, all relations ap-
pearing in the training set have a defined domain and range. Secondly, both the
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head h and tail t of train triples have another semantically valid counterpart for
negative sampling. These two conditions guarantee that each positive train triple
can be paired with at least one semantically valid triple. Finally, validation and
test sets contain triples whose relation have a well-defined domain (resp. range),
as well as more than 10 semantically valid candidates as head (resp. tail). This
ensures Sem@K is not unduly penalized and can be calculated on the same set
of entities as Hits@K and MRR until K = 10.

To ensure these requirements, we filtered FB15k237-ET, DBpedia93k, and
YAGO4-19k [13] so that they comply with the aforementioned criteria. In the
following, their filtered versions are referred to as FB15k187, DBpedia77k, and
Yago14k, respectively. Table 1 provides statistics for these datasets and reflects
the diversity of their characteristics. In this work, several KGEMs are consid-
ered: TransE [3], TransH [30], and DistMult [33] using LPHL; ComplEx [27] and
SimplE [16] using LPLL; ConvE [8], TuckER [2], and RGCN [25] using LBCEL.
Datasets and codes are available in our GitHub repository.4

Table 1. Datasets used in the experiments. These are filtered versions of the standard
FB15k237-ET, DBpedia93k, and YAGO4-19k.

Dataset |E| |R| |Ttrain| |Tvalid| |Ttest| Split ratios

FB15k187 14, 305 187 245, 350 15, 256 17, 830 88%/5.5 %/6.5%
DBpedia77k 76, 651 150 140, 760 16, 334 32, 934 74%/ 9 %/ 17%
Yago14k 14, 178 37 18, 263 472 448 95%/ 2.5%/2.5%

4.3 Implementation Details

For the sake of comparison, MRR, Hits@K and Sem@K are computed after
training models from scratch. KGEMs used in the experiments were imple-
mented in PyTorch. After training KGEMs for a large number of epochs, we
noticed the best achieved results were found around epoch 400 or below. Con-
sequently, a maximum of 400 epochs of training was set, as in LibKGE5 (except
RGCN which is trained during 4,000 epochs due to lower convergence to the best
achieved results). Except when using the BCEL which does not require negative
sampling, Uniform Random Negative Sampling [3] was used to pair each train
triple with two corresponding negative triples: one which is semantically invalid,
and one which is semantically valid. Regarding BCEL, each positive triple is
scored against negative triples formed with all other entities in the graph. Hence,
negative triples comprise both semantically valid and invalid triples. It should
be noted that the best epsilon values for each combination of model and dataset
were found on the validation sets. Once the best epsilon values are found, they

4 https://github.com/nicolas-hbt/semantic-lossfunc
5 https://github.com/uma-pi1/kge

https://github.com/nicolas-hbt/semantic-lossfunc
https://github.com/uma-pi1/kge
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remain fixed for all triples. In order to ensure fair comparisons between mod-
els, embeddings are initialized with the same seed and each model is fed with
exactly the same set of negative triples at each epoch. Grid-search based on
predefined hyperparameters was performed. Best hyperparameters and the full
hyperparameter space are reported on GitHub.4

5 Results

5.1 Global Performance

Table 2. Rank-based and semantic-based results. Bold fonts indicate which model
performs best w.r.t. a given metric. Suffixes V and S indicate whether the model is
trained under the vanilla or signature-driven version of the loss function, respectively.
Hits@10 and Sem@10 are abbreviated to H@10 and S@10. Underlined cells indicate re-
sults that are more specifically referred to in Section 5.1. We use the symbol † when the
comparison of results in a duel (e.g. TransE-V vs. TransE-S) is statistically significant
(α = .05) for a given metric and dataset.

FB15k187 DBpedia77k Yago14k
MRR H@10 S@10 MRR H@10 S@10 MRR H@10 S@10

TransE-V .260 .446 .842 .274 .438 .936 .868 .945 .795

TransE-S .315† .497† .973† .275 .440 .985† .876 .944 .968†

TransH-V .266 .450 .855 .270 .437 .907 .836 .944 .581

TransH-S .319† .501† .973† .274† .442† .980† .857† .945 .831†

DistMult-V .291 .457 .824 .295 .405 .784 .904 .930 .409

DistMult-S .332† .504† .971† .300† .416† .901† .912† .929 .449†

ComplEx-V .280 .416 .472 .309† .415† .769 .925 .932 .333

ComplEx-S .316† .476† .796† .297 .409 .897 .923 .931 .667†

SimplE-V .261 .387 .462 .259† .346† .883† .926 .931 .355

SimplE-S .268† .409† .759† .230 .302 .850 .924 .927 .769†

ConvE-V .273 .470 .973 .273 .382 .935 .934 .942 .904

ConvE-S .283† .476† .996† .283† .405† .985† .933 .940 .997†

TuckER-V .316 .516 .985 .311 .410 .912 .923 .927 .781

TuckER-S .320† .522† .996† .312 .421† .969† .931† .943† .929†

RGCN-V .241 .386 .775 .194 .297 .872 .911 .923 .349

RGCN-S .260† .415† .860† .197† .320† .957† .927† .934† .828†

Table 2 displays KGEM performance, datasets and evaluation metrics of
interest. We performed t-tests (when prediction-related data follow a normal
distribution according to Shapiro test) and Wilcoxon tests (when they do not)
at the significance level α = .05. Table 2 clearly shows that, with the sole ex-
ception of SimplE on DBpedia77k, the signature-driven loss functions LS

PHL,
LS
BCEL, and LS

PLL all lead to significant improvement in terms of Sem@10.
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Importantly, in some cases the relative gain in Sem@10 compared to the corre-
sponding vanilla loss function is huge (underlined in Table 2): +137%, +117%,
and +100% for RGCN, SimplE, and ComplEx on the smaller Yago14k dataset,
respectively, and +69% and +64% for ComplEx and SimplE on FB15k187, re-
spectively. These gains in terms of Sem@10 are observed regardless of the loss
function at hand, which demonstrates that our designed signature-driven loss
functions can all drive KGEM semantic correctness towards more satisfying re-
sults. It is worth noting that, in most cases, they also lead to better KGEM
performance as measured by MRR and Hits@10. We observe that in 19 out
of 24 (≈ 79%) one-to-one comparisons between the same KGEM trained with
vanilla vs. signature-driven loss functions, better MRR values are reported for
the model trained under the signature-driven loss function. On the remaining
comparisons (≈ 21%), only two highlight statistically significant losses in terms
of MRR. However, they are minimal and often for the benefit of significantly bet-
ter Sem@10 values. This observation raises the question whether better MRR
and Hits@K should be pursued at any cost, or whether a small drop w.r.t. to
these metrics is acceptable if this leads to a significantly better KGEM semantic
correctness (see Section 6.3). Plus, these promising results imply that even if
the intended purpose is to only maximize MRR and Hits@K values, taking the
available signature information into consideration is strongly advised: this does
not only improve KGEM semantic correctness, but also provide performance
gains in terms of MRR and Hits@K.

In the following, we provide a finer-grained results’ analysis, which focuses on
the different loss functions and datasets used in the experiments. Although we
previously showed the effectiveness of our approach, the benefits brought from
considering BK in the form of relation domains and ranges differ across loss func-
tions. In particular, the gains achieved using LS

PHL and LS
BCEL are substantial.

With these loss functions, we observe a systematic improvement w.r.t. Sem@10.
Gains are also reported w.r.t. rank-based metrics in the vast majority of cases.
The only exception is on Yago14k where semantic losses are sometimes slightly
outperformed but still competitive w.r.t. their vanilla counterparts. However,
the difference in terms of MRR and Hits@10 values is negligible and not statisti-
cally significant. This may come from the reduced number of triples in Yago14k,
which results in the additional signature information improving Sem@K but
not helping discriminate gold entities from others. Therefore, incorporating BK
about relation domains and ranges into LS

PHL and LS
BCEL is a viable approach

that provides consistent gains both in terms of MRR, Hits@10 and Sem@10.
Regarding the benefits from doing so under LS

PLL, we can notice a slight de-
cline in MRR and Hits@10 values in some cases. However, the other side of the
coin is that achieved Sem@10 values are substantially higher: except for SimplE
on DBpedia77k, Sem@10 values increase in a range from +17% to +117% for
the remaining one-to-one comparisons. As such, our approach using LS

PLL also
provides satisfactory results, as long as a slight drop in rank-based metrics is
acceptable if it comes with the benefit of significantly better KGEM semantic
correctness. Besides, it is worth noting the following points: our hyperparam-
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eter tuning strategy relied on the choice of the best ϵ value on Yago14k – for
computational limitations. The ϵ value which was found to perform the best on
Yago14k was subsequently used in all the remaining scenarios. A more thorough
tuning of ϵ on the other datasets would have potentially provided even more
satisfying results under the LS

PLL, thus strengthening the value of our approach.

5.2 Ablation Study

In this section, KGEMs are tested on three buckets of relations that feature nar-
row (B1), intermediate (B2), and large (B3) sets of semantically valid heads or
tails, respectively. The cut-offs have been manually defined and are provided in
supplementary materials4. The analysis of B1 allows us to gauge the impact of
signature-driven loss functions on relations for which it is harder to predict se-
mantically valid entities. Results reported in Table 3 for B1 clearly demonstrate
that the impact of injecting BK into loss functions is exacerbated for them, thus
supporting the value of our approach in a sparse and difficult setting. One might
think that the better MRR values achieved with LS

PHL, LS
BCEL, and LS

PLL are
highly correlated to the better Sem@10 values. This is partially true, as for a
relation in B1, placing all semantically valid candidates at the top of the ranking
list is likely to uplift the rank of the ground-truth itself. However, we can see
that RGCN-V and RGCN-S have almost equal MRR values on Yago14k, while
Sem@10 values of RGCN-S are much higher than RGCN-V (+254%). Similar
findings hold for ComplEx on Yago14k, ConvE on DBpedia77k, TransE on DB-
pedia77k and Yago14k. This shows that in a number of cases, signature-driven
loss functions improve the semantic correctness of KGEM for small relations
while leaving its performance untouched in terms of rank-based metrics. Results
on B2 and B3 are provided in supplementary materials4. In particular, it can be
noted that the relative benefit of our approach w.r.t. MRR and Hits@10 is more
limited on such buckets. Regarding Sem@K, results achieved with the vanilla
loss functions are already high, hence the relatively lower gain brought by in-
jecting ontological BK. These already high Sem@K values may be explained by
a higher number of semantically valid candidates.

6 Discussion

6.1 Treating Different Negatives Differently (RQ1)

The proposed loss functions LS
PHL, LS

BCEL, and LS
PLL provide adequate training

objective for KGEMs, as evidenced in Table 2. Most importantly, in Section 3 we
clearly show how the inclusion of signature information into LS

PHL, LS
BCEL, and

LS
PLL can be brought under one roof thanks to a commonly defined semantic

factor. Although this semantic factor operates at different levels depending on the
loss function, its common purpose is to differentiate how semantically valid and
semantically invalid negative triples should be considered compared to positive
triples, whereas traditional approaches treat all negative triples indifferently.
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Table 3. Rank-based and semantic-based results on the bucket of relations that feature
a narrow set of semantically valid heads or tails (B1). The cut-offs have been manually
defined and are provided in supplementary materials.

FB15k187 DBpedia77k Yago14k
MRR H@10 S@10 MRR H@10 S@10 MRR H@10 S@10

TransE-V .535 .727 .647 .498 .578 .460 .914 .979 .620
TransE-S .646 .805 .937 .539 .626 .910 .922 .975 .924

TransH-V .541 .734 .661 .475 .555 .425 .897 .972 .436
TransH-S .655 .814 .936 .541 .643 .828 .923 .981 .684

DistMult-V .589 .735 .628 .466 .462 .244 .949 .959 .304
DistMult-S .667 .802 .929 .498 .547 .451 .965 .958 .372

ComplEx-V .530 .567 .116 .424 .425 .161 .955 .956 .133
ComplEx-S .637 .723 .537 .421 .399 .198 .961 .956 .423

SimplE-V .507 .553 .136 .396 .370 .273 .959 .882 .932
SimplE-S .576 .671 .505 .324 .259 .206 .958 .883 .930

ConvE-V .549 .779 .973 .518 .569 .789 .969 .972 .915
ConvE-S .562 .783 .986 .518 .566 .927 .969 .965 .960

TuckER-V .597 .811 .969 .519 .568 .740 .949 .970 .846
TuckER-S .598 .815 .973 .526 .582 .797 .964 .970 .892

RGCN-V .510 .629 .468 .386 .387 .254 .963 .959 .141
RGCN-S .549 .705 .682 .396 .415 .398 .966 .967 .499

Besides, our approach that transforms vanilla loss functions into signature-driven
ones can also work for other loss functions such as the pointwise hinge loss or
the pairwise logistic loss, as presented in [22], by including a semantic factor ϵ as
well. The tailoring of these losses and the experiments are left for future work.

Recall that compared to complex negative sampler such as KBGAN [4],
NSCaching [34], and self-adversarial NS [26], we do not introduce any potential
overhead due to the need for maintaining a cache [34] or training an intermedi-
ate adversarial learning framework [4,26] for generating high-quality negatives.
Instead, negative triples dynamically enter a different part of the loss function
depending on their semantic validity. In future work, we will compare the perfor-
mance and algorithmic complexity of our approach w.r.t. NS procedures, thereby
highlighting the potential cost savings in computational resources and execution
time compared to sophisticated NS. Our approach is also agnostic to the under-
lying NS procedure, and can work along with simple uniform random NS [3] as
well as more complex procedures [4,34,26]. Besides, our approach can be applied
even in the absence of BK. In this case, signature-driven loss functions reduce
to their vanilla version.

6.2 Impact of Signature-Driven Losses on Performance (RQ2)

Mohamed et al. [21] investigate the effects of specific choices of loss functions
on the scalability and performance of KGEMs w.r.t. rank-based metrics. In this
present work, we also assess the semantic capabilities of such models. Based on
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the results provided and analyzed in Section 3, incorporating BK about relation
domains and ranges into the loss functions clearly contribute to a better KGEM
semantic correctness, as evidenced by the huge increase frequently observed w.r.t.
Sem@K. Although it seems intuitive that our proposed approach will result in
better predicted semantics, it should not be taken for granted. Hubert et al.
demonstrate that in the special case of LP on a single target relation (e.g., rec-
ommender systems), incorporating schema-based information during training (in
their case, during negative sampling) actually decreases the semantic correctness
of KGEMs [12]. This result leads us to posit that injecting ontological informa-
tion during training does not necessarily lead to a better semantic correctness.
The improvement might depend on (1) where this information is consumed (e.g.,
in the loss function, during negative sampling) and (2) what the task at hand is.

It should also be noted that this increase is not homogeneously distributed
across relations: relations with a smaller set of semantically valid entities as
heads or tails are more challenging w.r.t. Sem@K (see Table 3 and results on
B2 and B3 in supplementary materials4). For such relations, the relative gain
from signature-driven loss functions is more acute. In addition, signature-driven
loss functions also drive most of the KGEMs towards better MRR and Hits@K
values. As shown in Table 2, this is particularly the case when using the LS

PHL

and LS
BCEL. This result is particularly interesting, as it suggests that when

semantic information about entities and relations is available, there are benefits
in using it, even if the intended goal remains to enhance KGEM performance
w.r.t. rank-based metrics only.

In addition, it has been noted that including signature information in loss
functions has the highest impact on small relations (B1) (Table 3), both in terms
of rank-based metrics (MRR, Hits@10) and semantic correctness (Sem@10). For
relations with a larger pool of semantically valid entities, the impact is still
positive w.r.t. Sem@10, but sometimes at the expense of a small drop in terms
of rank-based metrics. If the latter metrics are the sole optimization objective, it
would be reasonable to design an adaptive training strategy in which vanilla and
signature-driven loss functions are alternatively used depending on the current
relation and the number of semantically valid candidates as head or tail.

6.3 On the Evaluation of KGEM Predictions for LP

It should be noted that Sem@K measures the capability of models to predict
semantically correct triples w.r.t. relation signatures and but does not mea-
sure falsehood, contrary to MRR or Hits@K. It can be argued that in specific
use-cases, such as e-commerce recommender systems, models should predict the
expected item (high MRR/Hits@K) but also predict semantically valid items
(high Sem@K) for a good user experience. In other applications such as health-
care, aerospace, or security, users expect to notice when models are failing in
order to be able to take over. This corresponds to high MRR/Hits@K and low
Sem@K so that errors are clearly noticeable.

Our experiments and these use cases illustrate the need of both Hits@K and
Sem@K metrics to precisely qualify model performance w.r.t. the needs of the
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considered application (e.g., e-commerce, healthcare). This opens perspectives
on sampling and differently considering different kinds of negative triples to tailor
specific aspects of model performance to the requirements of the application. For
instance, based on the results of our experiments, we could envision differently
considering negatives for an e-commerce application to obtain a high Sem@K
while an aerospace application would require the contrary.

7 Conclusion

In this work, we focus on the main loss functions used for link prediction in knowl-
edge graphs. Building on the assumption that negative triples are not all equally
good for learning better embeddings, we propose to differentiate them based
on their semantic validity w.r.t. the domain and range of relations by including
relation signature information into loss functions. A wide range of KGEMs are
subsequently trained under both the vanilla and signature-driven loss functions.
In our experiments on three public KGs with different characteristics, the pro-
posed signature-driven loss functions lead to promising results: in most cases,
they do not only lead to better MRR and Hits@10 values, but also drive KGEMs
towards better semantic correctness as measured with Sem@10. This advocates
for the further injection of semantic information into loss functions whenever
such information is available. In future work, we will study how the proposed
loss functions can accommodate other types of ontological constraints as well as
literal nodes.
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A Modified Versions of LS
BCEL and LS

PLL

In Table 4, we report results using KGEMs trained with LS′

BCEL and LS′

PLL,
where the superscript S′ denotes a different way to include semantic informa-
tion. LS′

PLL uses the modified labeling function as used in LS
BCEL and defined in

Equation (5). Conversely, LS′

BCEL uses the binary (unmodified) labelling func-
tion ℓ but adopts the same procedure as LS

PLL: semantically valid negative triples
are considered as positive with probability ϵ %. Hyperparameters for LS

BCEL,
LS
PLL, LS′

BCEL, and LS′

PLL are reported in https://github.com/nicolas-hbt/
semantic-lossfunc. Results achieved with all the aforementioned loss func-
tions are provided in Table 4. It shows that the signature-driven loss functions
presented in the paper are the best performing ones.

Table 4. Rank-based and semantic-based results on FB15k187, DBpedia77k, and
Yago14k. Bold fonts indicate which model performs best w.r.t. a given metric. Suf-
fixes S and S’ indicate whether the model is trained under the best (as presented in the
paper) or the worst (as presented here) signature-driven version of the loss function,
respectively.

FB15k187 DBpedia77k Yago14k
MRR H@10 S@10 MRR H@10 S@10 MRR H@10 S@10

ComplEx-S .316 .476 .796 .297 .409 .897 .923 .931 .667
ComplEx-S’ .227 .384 .777 .252 .350 .918 .907 .930 .603

SimplE-S .268 .409 .759 .230 .302 .850 .924 .927 .769
SimplE-S’ .169 .288 .827 .230 .297 .583 .885 .915 .290

ConvE-S .283 .476 .996 .283 .405 .985 .933 .940 .997
ConvE-S’ .271 .472 .975 .273 .383 .935 .933 .941 .894

TuckER-S .320 .522 .996 .312 .421 .969 .931 .943 .929
TuckER-S’ .316 .517 .983 .311 .412 .912 .918 .938 .867

RGCN-S .260 .415 .860 .197 .320 .957 .927 .934 .828
RGCN-S’ .243 .391 .780 .146 .246 .862 .912 .922 .385

B Bucket Analysis

Relations are separated into three non-intersecting buckets : relations that fea-
ture narrow (B1), intermediate (B2), and large (B3) sets of semantically valid
heads or tails, respectively. Cut-offs are manually defined for placing a given
relation in its corresponding bucket. Such buckets are reported in https://
github.com/nicolas-hbt/semantic-lossfunc. Results achieved on B1 are re-
ported in the paper, while results for buckets B2 and B3 for DBpedia77k,
FB15k187, and Yago14k are reported in https://github.com/nicolas-hbt/
semantic-lossfunc.
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