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Abstract. Most knowledge graph completion (KGC) methods rely solely
on structural information, even though a large number of publicly avail-
able KGs contain additional temporal (validity time intervals) and tex-
tual data (entity descriptions). While recent temporal KGC methods
utilize time information to enhance link prediction, they do not lever-
age textual descriptions or support inductive inference (prediction for
entities that have not been seen during training).
In this work, we propose a novel framework called TEMT that exploits
the power of pre-trained language models (PLMs) for temporal KGC.
TEMT predicts time intervals of facts by fusing their textual and tempo-
ral information. It also supports inductive inference by utilizing PLMs. In
order to showcase the power of TEMT, we carry out several experiments
including time interval prediction, both in transductive and inductive
settings, and triple classi�cation. The experimental results demonstrate
that TEMT is competitive with the state-of-the-art, while also support-
ing inductiveness.
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1 Introduction

Knowledge graphs are often incomplete, meaning that some elements of the facts
are not available. To this end, knowledge graph completion (KGC) methods aim
at �nding missing links between the entities. Most of these studies focus on static
knowledge graphs where the graph remains unchanged over time [15]. However,
in real life, facts are not always valid throughout time, but only in speci�c time
periods. For instance, presidents of a country are valid only throughout their
term.

To model this, triples in a knowledge graph may have validity time inter-
vals associated with them. This additional information converts a triple into
a quadruple form ⟨subject, relation, object, time interval⟩, e.g. ⟨Obama, presi-
dentOf, U.S., [2009, 2017]⟩. A graph consisting of a set of such temporal facts
-quadruples- is referred to as a Temporal Knowledge Graph (TKG).
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Fig. 1. An example of a text-enhanced temporal knowledge graph.

Alike traditional KGs, temporal knowledge graphs su�er inherently from in-
completeness due to their dynamic nature. In particular, the temporal informa-
tion (validity time interval) is often missing after an automatic knowledge graph
construction. To this end, the temporal knowledge graph completion (TKGC)
task aims to predict a missing quadruple element, such as time interval predic-
tion ⟨s, r, o, ?⟩. The time interval prediction task is useful for temporal question
answering, automatic TKG construction, and veri�cation of TKGs that have
temporal constraints [35].

(Temporal) knowledge graphs completion methods [36] can bene�t from tex-
tual descriptions of entities and relations since they contain valuable information
regarding semantic relationships across entities. For instance, in a description of
an entity, there may be a reference to some other entity, despite the absence of
any type of relationship (edge) in the knowledge graph among them. Further-
more, by considering the semantics of the descriptions, one may gain insight into
the validity time of the facts. As an example, if an entity description contains
elements from a certain century or a period like Renaissance, facts involving that
entity may be valid for that period. Figure 1 illustrates a temporal knowledge
graph with entities that have textual descriptions associated with them.

The availability of textual descriptions in knowledge graphs provides an ex-
cellent opportunity for exploiting the bene�ts that both knowledge graphs and
language models can o�er. Recent works has shown that language models store
real-world knowledge in their parameters and can potentially be used as knowl-
edge graphs [27, 3], and that textual information can improve link prediction for
static knowledge graphs [20, 38]. Moreover, it has been shown that entity de-
scriptions and pre-trained language models can model facts that involve unseen
entities (inductiveness) [9, 34]. Supporting inductive reasoning is crucial since
most real-world knowledge graphs are often continuously extended with new en-
tities. Unfortunately, most temporal knowledge graph completion mechanisms
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are transductive, which means that they can only perform predictions on the
entities they have already seen during training, i.e., are part of the training set.

We provide a novel temporal knowledge graph completion framework called
TEMT (Text Encoder Meets Time)3 that combines the available textual and
temporal information for time interval prediction. TEMT is able to predict
time intervals for unseen entities by leveraging a pre-trained language model. We
extend the two commonly used datasets, i.e., YAGO11k and Wikidata12k [8],
with textual descriptions. In addition, we create new train/valid/test splits for
experiments on time interval prediction in inductive setting. Our experiments
show that TEMT is competitive with state-of-the-art and able to reason on
unseen entities (even when both the subject and object of a quadruple are unseen
in training).

2 Preliminaries

A temporal knowledge graph (TKG) is a directed graph G = (E ,R, T ,Q) where
E ,R, T are sets of entities, relations, time points and Q represents the set of
quadruples (or temporal facts) in the format ⟨subject s, relation r, object o,
time interval tI⟩ where s, o ∈ E , r ∈ R, tI = [tstart, tend] and tstart, tend ∈ T .
Note that tI can also be a single time point if tstart=tend.

Temporal knowledge graphs can be grouped into two types: event TKGs
and interval-based TKGs. The former refers to TKGs in which tstart = tend for
every quadruple. On the other hand, interval-based TKGs, which are the focus
of this paper, represent TKGs where each quadruple has a validity time interval
tI = [tstart, tend]. An interval is called left-open if tstart is unknown, right-open if
tend is unknown, and closed interval if both the start and end points are known.
The format of time points depends on the chosen time granularity, such as years,
months, or days.

Text-enhanced temporal knowledge graphs are TKGs where each entity and
relation is associated with a name and each entity has some natural language text
that describes its meaning. This additional information provides a context and
attaches a semantic meaning to the facts, which can be informative for predicting
the validity time interval of the fact. More formally, a text-enhanced temporal
knowledge graph is a directed graph G = (E ,R, T ,Q,N ,D) where E ,R, T are
sets of entities, relations, time points and Q represents the set of quadruples,
N denotes the set of entity and relation names, and D denotes the set of entity
descriptions. An example for text-enhanced TKG is given in Figure 1.

We can split Q into three disjoint sets as train, validation, and test sets.
Formally, Q = Qtrain ∪ Qval ∪ Qtest where Qtrain represents the set of train
quadruples, Qval represents the set of validation quadruples and Qtest represents
the set of test quadruples. Similarly, we can specify the set of entities as Etrain,
Eval and Etest.
3 The datasets and the source code are available at
https://github.com/duyguislakoglu/TEMT.
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Problem Statement Time interval prediction is the task of predicting the
validity time interval of a triple. More formally, given a quadruple ⟨s, r, o, ?⟩
with unknown validity time interval, the objective is to predict a time interval
tI . We can reformulate the question as follows: given training and validation
sets, Qtrain and Qval, the time interval prediction is to output tI for each test
quadruple ⟨s, r, o, ?⟩ ∈ Qtest.

In this paper, we focus on two variants of this problem: transductive time
interval prediction and inductive time interval prediction. The transductive case
aims to predict tI for each test quadruple in Qtest that does not contain any
new entities, i.e., Qtest = {⟨s, r, o, ?⟩|s, o ∈ Etrain}. In other words, all entities
in the test set are included in the training set, i.e., Etest ⊆ Etrain. Furthermore,
inductive time interval prediction aims to predict the time interval of facts where
the test set contains previously unseen entities [9]. For inductive inference, we
create splits as follows: for each quadruple in the test set, the subject or the
object (or both) does not appear in Etrain. Therefore, the test quadruplesQtest =
{⟨s, r, o, ?⟩|s ̸∈ Etrain} ∪ {⟨s, r, o, ?⟩|o ̸∈ Etrain}.

Pre-trained Language Models We exploit the representational power of pre-
trained language models to capture the semantics of facts and to deal with unseen
entities. Language models assign a probability to a word by taking into account
the other words in a sentence and can predict the next word given a sequence
of words. This can be done by learning a latent representation of words in a
vector space. Moreover, models such as bidirectional encoder representations
from transformers (BERT) [11] do not only consider the previous words but
also take the subsequent words into account. BERT generates a contextual word
embedding where the representation of a word depends on the whole context.

A pre-trained language model (PLMs) is a language model that is trained
on a large text corpora including books, encyclopedias, and web data. PLMs
can be used for many downstream tasks such as question-answering and text
summarization. A pre-trained model, such as pre-trained BERT, can be further
�ne-tuned for a speci�c task or can be used for feature extraction of a sentence.
However, since BERT is designed for word-level tasks and not optimized for
sentence-level tasks, it performs poorly in semantic textual similarity tasks [28].
On the other hand, Sentence-BERT [28], a language model built on top of BERT,
is explicitly trained to generate sentence embeddings where semantically similar
sentences are closer in the embedding space. In the next section, we explain how
Sentence-BERT can be used to generate an embedding for a triple.

3 The Framework

Wematerialize the idea of using pre-trained language models for temporal knowl-
edge graph completion into a framework called TEMT (Text Encoder Meets
Time). It learns a scoring function that takes a quadruple ⟨s, r, o, t⟩ where t is
a single time point and outputs a plausibility score. In the inference time, we
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Fig. 2. Overview of TEMT's architecture for quadruple scoring: the TextEncoder pro-
duces triple embedding esro, and the TimeEncoder generates time point embedding et.
These representations are fused to compute a plausibility score.

utilize the learned scoring function to output a time interval for a given triple
⟨s, r, o, ?⟩. Figure 2 gives an overview of the TEMT framework.

Embedding Triples with a Text Encoder The text encoder packs the names
and descriptions of triple elements as a single sentence and returns a vector. As
our text encoder, we leverage a pre-trained language model Sentence-BERT [28]4

to bene�t from its representation power. Inspired by [38], we form a single textual
sentence Ssro for a triple to feed Sentence-BERT.

Ssro = Ns +Nr +No + (Ds +Do), (1)

where Ssro is a string concatenation of the names and descriptions of the entities
and relations, N refers to names and D refers to entity descriptions. The text
encoder then outputs esro ∈ Rd which we call triple embedding :

esro = TextEncoder(Ssro) (2)

Our main motivation to leverage a language model as a text encoder is two-
fold. Firstly, the language model captures the interactions between the subject,
relation, and the object and outputs a semantically rich contextualized embed-
ding of the fact. Secondly, language models can model unobserved entities and
therefore support inductive reasoning. Moreover, not only Sentence-BERT, but
also any encoder-only model (e.g. BERT) can be used as our text encoder. This
is possible by adding a special [CLS] token to the beginning of the Ssro. In this
way, the token embedding for [CLS] captures the possible interactions between
the subject, relation and object [38] and functions as a sentence embedding.
Thus, TEMT is not dependent on Sentence-BERT; instead, it is model-agnostic.

4 The name of the model used is all-mpnet-base-v2.
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Embedding Time Points with a Time Encoder We use positional encoding
method [33] to produce vector representations of time points. This method is
widely used in (knowledge graph) question answering systems [23, 16, 39] in order
to embed time. Given a time point t and a reference time point tmin (which is the
earliest time point in the dataset), the j-th component of a time point embedding

for t is de�ned as follows:

TimeEncoder(t, tmin)[j] =

sin
(

t−tmin

100002i/d′

)
if j = 2i

cos
(

t−tmin

100002i/d′

)
if j = 2i+ 1

(3)

where the term t−tmin refers to the position of t relative to the earliest time point
tmin in T and d′ is the dimension of the time point embedding. Intuitively, the
time point embedding can be thought of as a position in time. The time encoder
requires a �rst time point tmin as a reference point, then the other time points
will be positioned relative to this reference point. For the sake of brevity, we
omit tmin from the time encoder function and simply write as TimeEncoder(t).
The time encoder outputs et ∈ Rd' which we call time point embedding.

et = TimeEncoder(t) (4)

We emphasize mainly the two properties of positional encodings: each time point
corresponds to a unique vector and the vectors of close time points are closer in
the vector space [16]. This enables us to model the dependencies across di�erent
time points and the notion of ordering. On the contrary, many previous works
[14, 19] learn the time vectors within the same space as entities and relations,
and they cannot model the time point dependencies. For instance, they learn
the consecutive years independently which may not capture ordering.

Moreover, TEMT can be adapted to di�erent time granularities. For instance,
one can set months as granularity by converting the years into corresponding
number of months. Lastly, in contrast to previous work, the time encoder can
represent unobserved time points. Although we do not focus on temporal induc-
tiveness in this paper, the time encoder can potentially be used for performing
predictions on future or unseen time points.

Fusing Triple and Time Point Embeddings In the previous sections, we
introduced two functions, namely TextEncoder and TimeEncoder, that allow
us to produce embeddings of triples and time points respectively. We are now
ready to discuss how these embeddings from di�erent spaces can be combined (or
fused) together. Similar to [25, 12], by treating the textual and temporal features
as di�erent modalities, TEMT combines triple and time embeddings using a
multi-layer perceptron (MLP). The fusion of these two embeddings produces a
representation of a quadruple. Formally, given a quadruple q, the time-aware
quadruple representation eq is obtained as follows:

eq = (W1vconcat + b1) ∈ Rm (5)
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vconcat = [esro; et] ∈ Rd+d′
(6)

where [ ; ] denotes concatenation operation,W1 ∈ Rm×(d+d′) and b1 ∈ Rm denote
the learnable parameters and m is the dimension of eq where m < (d+ d′).

Another approach for embedding a quadruple is to append the time point to
the textual sentence Ssro in Equation (1) and feed pre-trained language model
with this new sentence. This would represent all quadruple elements in a single
space, which is the text space. However, it is shown that PLMs are not good at
number representations [31]. Our preliminary analysis also demonstrated that
language models are not good at temporal reasoning such as ordering events and
interval arithmetic. This motivates the need for an external time encoder.

Parametric Quadruple Scoring Function Although most methods use a
�xed distance function for scoring triples or quadruples, there are some methods
such as ConvE [10] and ConvKB [24] that learn the parameters for a scoring
function. Similarly, we employ a parametric scoring function to output a plausi-
bility score for a quadruple of a given TKG:

f(s, r, o, t) = W2eq + b2 (7)

where W2 ∈ R1×m and b2 ∈ R are learnable parameters of the �nal layer of the
neural network. Before feeding the input to this �nal layer, we use ReLU [1] as
an activation function.

Negative Sampling The model learns by distinguishing valid quadruples from
incorrect quadruples. To this end, TEMT employs two di�erent types of negative
sampling. The �rst type is called entity-corrupted negative sampling. In this
approach, the set of negative quadruples D−

⟨s,r,o,t⟩ is created by corrupting the

subject or the object of a given quadruple ⟨s, r, o, t⟩ as shown below:

D−
⟨s,r,o,t⟩ = {⟨s′, r, o, t⟩ ̸∈ D+|s′ ∈ E} ∪ {⟨s, r, o′, t⟩ ̸∈ D+|o′ ∈ E}. (8)

where D+ = Qtrain denotes the set of positive quadruples.

The second one is called time-corrupted negative sampling [6]. In this ap-
proach, the set of negative quadruples D−

⟨s,r,o,t⟩ is created by corrupting the

time point of a given quadruple ⟨s, r, o, t⟩ as the following:

D−
⟨s,r,o,t⟩ = {⟨s, r, o, t′⟩ ̸∈ D+|t′ ∈ T }. (9)

t′ is sampled based on the validity time interval tI of the given quadruple. If tI
is a right-open interval, then t′ < tstart is sampled (e.g. t′= 2006 for tI=[2008,
unknown]); if tI is left-open interval, then t′ > tend is sampled (e.g. t′= 1950 for
tI=[unknown, 1930]); if tI is a closed interval, then t′ /∈ [tstart, tend] is randomly
chosen (e.g. t′=1750 for tI=[1800, 1810]).
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Training Similar to [4], we use the following margin-based ranking loss for
training:

L =
∑

qp∈D+

∑
qn∈D−

qp

max(0, f(qn)− f(qp) + γ). (10)

where qp is a positive quadruple, qn is a negative quadruple, γ is the margin
value and f is the scoring function from Equation (7). We train the model to
give higher scores to positive quadruples (with a given margin γ) than negative
quadruples. In this way, we learn a quadruple scoring function that will be used
for predicting time intervals.

Inference In the previous sections, we discuss how TEMT learns a scoring
function that gives plausibility score to an individual quadruple. Now, we will
discuss how we go from the individual quadruple scores to a time interval. As
discussed in Section 2, our main goal is to predict time interval for a given
⟨s, r, o, ?⟩. Given the earliest (ttestmin) and the latest time point (ttestmax) in the test
set, we compute the plausibility score of quadruple with each time point in the
interval [ttestmin, t

test
max]. So the list of test scores are de�ned as the following:

S =
[
f(s, p, o, t)|t ∈ [ttestmin, t

test
max]

]
(11)

We turn these scores into probabilities by using the softmax function.

P =
[
P (t|s, r, o)|t ∈ [ttestmin, t

test
max]

]
(12)

where

P (ti|s, r, o) =
exp(f(s, p, o, ti))∑

sj∈S exp(sj)
. (13)

Lastly, we use greedy-coalescing algorithm from [6] that takes probabilities P
and outputs k time intervals as our predictions.

4 Experiments

4.1 The Datasets

We perform our experiments on two interval-based TKGs: YAGO11k and Wiki-
data12k [8]. YAGO11k is created from YAGO3 knowledge graph [22] by the
meta-facts in the form of (#factID, occurSince, tstart) and (#factID, occurUn-
til, tend) that are available in some of the facts. Wikidata12k is a subgraph
of a preprocessed version of Wikidata [19] that contains facts with temporal
annotations (e.g. point-in-time, start time, end time) or properties (e.g. "start
time", "inception", "demolition time"). In both datasets, each fact has a time
interval attached to it and each entity has at least two edges. Furthermore, ind-
YAGO11k datasets and ind-Wikidata12k are inductive splits that we generate
from YAGO11k and Wikidata12k. The details of the four datasets are given in
Table 1.
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Table 1. Dataset statistics.

Dataset Entity Relation Train Valid Test

YAGO11k 10,623 10 16,408 2,050 2,051
Wikidata12k 12,554 24 32,497 4,062 4,062
ind-YAGO11k 10,623 10 12,330 3,726 4,453
ind-Wikidata12k 12,554 24 27,330 6,354 6,937

We enhance the datasets with the names and descriptions of entities and re-
lations. For Wikidata12k, the entity names and descriptions are extracted from
their corresponding Wikipedia pages. For YAGO11k, the entity and relation
names are already available in the dataset. We extract the entity descriptions for
YAGO11k from Wikipedia pages as well. For both datasets, the entity descrip-
tions are limited to one sentence. Similar to [14, 6], we �x the time granularity
as "year" and drop the months and days. For each quadruple in the training
set that has closed-interval, i.e., ⟨s, r, o, [tstart, tend]⟩, we get two training data
points ⟨s, r, o, tstart⟩ and ⟨s, r, o, tend⟩. An alternative would be to get all in-
termediate time points between tstart and tend. However, this approach would
result in oversampling for relations with long duration [14]. Lastly, if either tstart
and tend is unknown, we only consider the known time point.

To test TEMT's ability to generalize on unseen entities, we design new splits
based on YAGO11k and Wikidata12k and refer to them as ind-YAGO11k and
ind-Wikidata12k, respectively. For inductive reasoning, the validation and test
sets should have some entities that are not in the training set. We employ the
algorithm from [9] to create the new splits. The algorithm samples an entity
and removes this entity from the graph G if this removal does not result in any
isolated node or any relation type with less than 100 edges in the graph. The
removed entity and its edges are then added either to the validation set and or
to the test set. Thus, each triple in the test set has either a new subject or a
new object. The test set has 1062 and 1255 unseen entities for YAGO11k and
Wikidata12k, respectively. The algorithm works in triple level therefore assumes
that the underlying graph is static by ignoring the validity time intervals. There-
fore, each split has di�erent triples, not quadruples. As a last step, we attach
the corresponding time information to each triple to convert it to a quadruple.

4.2 Evaluation Metrics

For time interval prediction, we use three interval metrics that compare the pre-
dicted interval Ip = [tpstart, t

p
end] and the ground-truth interval Ig = [tgstart, t

g
end].

Ideally, Ip is completely the same as Ig or they have some overlap. If there is no
overlap, at least Ip and Ig should be close to each other. The �rst metric gIOU
(generalized intersection over union) [30] is de�ned as follows:

gIOU (Ip, Ig) = IOU (Ip, Ig)−
|gap(Ip, Ig)|
|hull(Ip, Ig)|

(14)
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where

IOU (Ip, Ig) =
|overlap(Ip, Ig)|

|Ip|+ |Ig| − |overlap(Ip, Ig)|
(15)

|gap(Ip, Ig)| is the distance between Ip and Ig in non-overlapping case (otherwise
0) and the hull is the shortest interval that covers both Ip and Ig. The length
of an interval is de�ned as |[tstart, tend]| = tend − tstart + 1. In Section 7.2, we
provide a visual illustration demonstrating the terminology used.

The second metric is aeIOU [14], a�nity enhanced intersection over union.
It is de�ned as follows:

aeIOU (Ip, Ig) =

{ |overlap(Ip,Ig)|
|hull(Ip,Ig)| |overlap(Ip, Ig)| > 0,

1
|hull(Ip,Ig)| otherwise.

(16)

The drawback of aeIOU that it outputs the same scores for both Ip and Ip∗ if
hull(Ip, Ig) = hull(Ip∗ , Ig), ignoring the fact that one of them can be closer to
Ig. In order to address this drawback, the study in [6] introduces a new metric
called gaeIOU (generalized aeIOU).

gaeIOU (Ip, Ig) =

{ |overlap(Ip,Ig)|
|hull(Ip,Ig)| |overlap(Ip, Ig)| > 0,
|gap(Ip,Ig)|−1

|hull(Ip,Ig)| otherwise.
(17)

Using the three metrics, given in Equation 14, 16 and 17, we report time inter-
val prediction results based on gIOU@k, aeIOU@k, and gaeIOU@k. Given the
predicted intervals for a test triple ⟨s, r, o, ?⟩ and its ground-truth interval Ig,
gIOU@k is de�ned as the following:

gIOU@k = max
1≤i≤k

gIOU(Ipi
, Ig) (18)

where Ipi
denotes ith predicted interval for that particular triple. aeIOU@k and

gaeIOU@k are de�ned analogously. We report the results averaged over all the
test triples. We present the variance results for each metric in Section 7.3. The
range for gIOU is [-1,1]. We follow the same procedure as our baselines and
report the scaled gIOU values ((gIOU+1)/2). The range for aeIOU and gaeIOU
is [0,1].

4.3 Experimental Setup

For all experiments, the dimension d for the triple embedding esro is 768 and the
dimension d′ for time point embedding is 64. We set m in Equation (5) to 64.
We use 128 time-corrupted negative samples. A further analysis on the e�ect of
the number of negative samples can be found in Section 7.1. The results show
that time-corrupted negative sampling strategy is more suitable for our problem.
We train our model with Adam optimizer [17] for 50 epochs with a learning rate
of 0.001 and margin value γ = 2. We set the threshold for greedy-coalescing to
0.65. We report the e�ect of hyperparameters in Section 4.6.
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Model Variants We use two di�erent variants of TEMT, namely, TEMTN

and TEMTND. The variant TEMTN is trained without the entity descriptions
but only with the entity and relation names. In order to re�ect this change, we
modify Equation (1) as Ssro = Ns +Nr +No. The variant TEMTND is trained
with both entity descriptions and names. Regarding the sequence length for the
language model, we keep the default Sentence-BERT setting which is 128 tokens.

Baselines In order to compare TEMT variants against the state-of-the-art, we
identify four di�erent TKGC methods as baselines: HyTE [8], TNT-ComplEx
[18], TIMEPLEX-base [14] and TIME2BOX-TNS [6]. To the best of our knowl-
edge, these are the only methods that perform time interval prediction. TIME-
PLEX has two variants: TIMEPLEX-base and TIMEPLEX. Unlike the other
baselines, TIMEPLEX relies on temporal constraints to improve its performance.
However, TIMEPLEX-base does not follow the same. Here, we report the results
of the latter. All of the baselines are transductive and do not use pre-trained
language models for learning entity and relation embeddings. To the best of our
knowledge, TEMT is the only method that supports inductive reasoning for time
interval prediction. Following our baselines, we only report on the test instances
that contain known time points which is compatible with our metrics so we do
not report results on test quadruples that has unknown start or end time points.

4.4 Transductive Time Interval Prediction

In this experiment, the task is to predict the validity time intervals of facts
in TKGs, namely predicting ⟨s, r, o, ?⟩. We compare the TEMT variants with
the baselines and report the transductive time interval prediction results for
YAGO11k and Wikidata12k in Table 2. On the YAGO11k dataset, TEMT
outperforms the baselines in all the metrics but aeIOU@10. Notably, in the
gIOU@1 metric, TEMT achieves 16 points more than the next best competi-
tor TIME2BOX-TNS. For Wikidata12k, we observe that TEMT variants show
improvements in the gIOU@1 metric in comparison with the baselines. For
aeIOU@1 and gaeIOU@1, which are more stringent metrics as discussed in 4.2,
TEMT variants are outperformed by the baselines. However, we also observe
that there is not a signi�cant performance di�erence across the datasets unlike
our baselines. This may indicate that TEMT is not very sensitive to dataset size
since YAGO11k is half the size of Wikidata12k. Moreover, TEMT is competitive
with the state-of-the-art on the metrics gIOU@10, aeIOU@10 and gaeIOU@10.

Comparing the variants, we observe that TEMTND performs better than
TEMTN in most cases. This observation supports the claim that entity de-
scriptions improve the context and, therefore, help to create more meaningful
semantic triple embeddings. We also observe that TEMT variants are better at
capturing the start and the end years compared to intermediate years, which pos-
sibly hurts the time interval prediction performance. The possible explanation
is that the text corpora that the language model is trained on generally contain
either the starting date or end date. In addition, the textual descriptions of enti-
ties may contain temporally irrelevant descriptions. For instance, for time point
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Table 2. Transductive time interval prediction experiment results on YAGO11k and
Wikidata12k datasets. The values are expressed in percentages. Results marked (*) are
taken from [6], results marked (�) are reproduced by us, and the others are taken from
[14]. "-" denotes unavailable results.

Methods gIOU@1 aeIOU@1 gaeIOU@1 gIOU@10 aeIOU@10 gaeIOU@10

YAGO11k

HyTE 15.96 5.41 - - - -
TNT-ComplEx 20.78 8.40 - - - -

TIMEPLEX-base� 23.77 12.62 6.92 48.30 34.63 26.63

TEMTN 39.85 13.05 10.05 58.78 32.89 29.24
TEMTND 38.60 13.48 9.61 60.65 34.33 30.34

Wikidata12k

HyTE 14.55 5.41 - - - -
TNT-ComplEx 36.63 23.35 - - - -

TIMEPLEX-base� 39.44 26.14 17.23 69.00 46.82 42.98
TIME2BOX-TNS* 42.30 25.78 17.41 70.16 50.04 47.54

TEMTN 39.35 12.90 8.81 61.68 34.97 30.71
TEMTND 43.52 17.13 12.58 65.84 42.00 38.43

Table 3. Inductive time interval prediction experiment results on ind-YAGO11k and
ind-Wikidata12k datasets. The values are expressed in percentages.

.

Methods gIOU@1 aeIOU@1 gaeIOU@1 gIOU@10 aeIOU@10 gaeIOU@10

ind-YAGO11k

TEMTN 39.07 14.23 10.32 61.53 35.90 32.79
TEMTND 37.20 14.81 10.15 60.07 36.73 33.32

ind-Wikidata12k

TEMTN 39.78 12.94 9.18 60.88 34.92 31.07
TEMTND 38.43 16.43 11.01 64.50 40.06 36.63

2000, we may get an entity description from Wikipedia that is updated in 2020.
Note that the results of TIME2BOX-TNS are taken from the paper [6]. We could
not reproduce the results for Wikidata12k and test the method on YAGO11k as
neither the source code nor the details for pre-processing the datasets is avail-
able. In addition, TIME2BOX-TNS does not provide results for the YAGO11k
dataset.

4.5 Inductive Time Interval Prediction

In this experiment, we perform inductive time interval prediction on newly gener-
ated inductive datasets ind-YAGO11k and ind-Wikidata12k. Since all our base-
lines only support transductive reasoning, they cannot be compared with TEMT.
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Hence, we exclude them from this experiment. The inductive time prediction re-
sults are reported in Table 3. ind-YAGO11k and ind-Wikidata12k have 1062
and 1255 unseen entities in test set, respectively. The results show that TEMT's
performance on inductive datasets is quite close to the transductive setting (Ta-
ble 2). This demonstrates the generalization power of TEMT on unseen entities
by the usage of pre-trained language models.

Another observation is that we do not see any signi�cant drop in performance
although the models are trained on ∼ 4,000 fewer training points than YAGO11k
and∼ 5,000 fewer training points thanWikidata12k. Moreover, similar to Section
4.4, TEMTND variant performs better in most cases. This indicates that the
context that entity descriptions provide helps the model to capture the semantics
of a triple better. TEMT is also applicable to a fully inductive setting where there
is no overlap between train and test set entities, which we leave as future work.

4.6 Fine-grained Analysis

Triple Classi�cation We investigate the representation power of triple em-
beddings by performing triple classi�cation experiment. The motivation is to
make sure that our text space is also meaningful like our time space. With this
experiment, we predict whether a triple is correct or not. To this end, we train
an MLP classi�er [26] with triple embeddings (esro). We �rst convert the train
and test quadruples into triples by removing time intervals. For the training
set, we corrupt the subject or object randomly and create one negative example
to avoid class imbalance. For the test set, we remove the triples that exist in
training or validation set to prevent information leakage. For each test triple, we
create one negative example that does not appear in training, validation or test
set. We create the sentences by applying Equation (1) and extract the features
using our text encoder. The sizes of the training sets are as follows: 32,690 for
YAGO11k, 64,980 for Wikidata12k, 24,558 for ind-YAGO11k, and 54,646 for
ind-Wikidata12k. Similarly, the sizes of the test sets are: 4,100 for YAGO11k,
5,530 for Wikidata12k, 8,880 for ind-YAGO11k, and 13,872 for ind-Wikidata12k.

We set L2 regularization term alpha to 0.05 and perform maximum 1000
iterations. We keep the default values of the MLP classi�er in [26] for the other
settings. TEMT achieves an accuracy of 89.12% on YAGO11k, 91.55% on Wiki-
data12k, 88.64% on ind-YAGO11k and 89.82% on ind-Wikidata12k respectively.
It illustrates the e�ectiveness of the text encoder thus supporting the claim that
the triple embeddings are semantically meaningful and potentially capture struc-
tural information.

Time Prediction Diagnosis Table 4 illustrates some examples for time inter-
val prediction experiment on both YAGO11k and Wikidata12k datasets. �Triple�
column represents some triples from the test set and the �Gold answer� column
represents their correct validity time interval. The table covers the triples that oc-
curred in di�erent centuries and that have varying durations. The next columns
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Table 4. Example predictions from Yago11k and Wikidata12k. The entity descriptions
are not displayed although utilized. (T1: "Kaká member of sports team Hertha BSC",
T2: "Ippling located in the administrative territorial entity Bezirk Lothringen", T3:
"Paulo Lopes (footballer) plays for S.L. Ben�ca", T4: "Je� Morrow is married to Anna
Karen Morrow", T5: "Henry Clay is a�liated to Whig Party (United States)").

Triple Gold answer 1st prediction 2nd prediction 3rd prediction

T1 [2008, 2012] [2008, 2014] [2011, 2012] [2004, 2011]
T2 [1871, 1920] [1860, 1920] [1871, 2018] [1919, 1920]
T3 [1997, 2002] [1997, 2004] [1999, 2000] [2000, 2008]
T4 [1947, 1993] [1956, 1992] [1959, 1960] [1960, 2013]
T5 [1833, 1852] [1830, 1862] [1817, 1847] [1818, 1829]

Table 5. Results of di�erent hyperparameters on the validation set of Wikidata12k.

d′ gaeIOU@1 learning rate gaeIOU@1 margin gaeIOU@1 threshold gaeIOU@1
32 11.76 0.001 11.86 1 12.26 0.4 10.29
64 11.94 0.002 11.52 2 12.33 0.5 11.56
128 11.77 0.003 11.74 5 11.18 0.65 11.87
256 11.78 0.01 11.36 7 10.97 0.7 11.66

report the TEMTND predictions for the corresponding triple. This experiment
shows that TEMTND is able to predict intervals that are close to the ground-
truth. In the �rst row, TEMT successfully predicts the starting point but output
a longer interval than the ground-truth. In the second row, the ending time point
is predicted correctly with an earlier starting point from the gold answer. The
predictions are usually a subset of the gold interval so it shows that the textual
information helps to predict the time period of facts.

Ablation Study We explore the e�ect of various hyperparameters on the per-
formance of TEMT with a number of experiments. This also allows us to choose
the optimal parameters that are discussed in Section 4.3. The results are shown
in Table 5 and the setting where d′=64, learning rate=0.001, margin=2, and
threshold=0.65 obtains the best results.

5 Related Work

Static KGC methods [15] can be roughly divided into two: knowledge graph
embedding (KGE) methods and text-based methods. KGE methods represent
entities and relations with low-dimensional vectors. They can be broadly classi-
�ed into three di�erent types: translational [4], semantic matching [37], and deep
learning methods [10]. A common approach for KGE methods is to learn a func-
tion to score the plausibility of a triple. These methods perform well on many
downstream tasks such as link prediction. However, they only utilize the struc-
ture of a graph and cannot easily be adapted to use additional information such
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as the textual descriptions of entities and relations. Text-based methods, which
we will discuss at the end of this section, utilize textual information available in
knowledge graphs to infer missing links between entities.

Although the majority of prior research has focused on static KGs, there has
been a growing interest in exploring evolving knowledge graphs [5]. In this sec-
tion, we focus on interval-based TKG completion methods. A common approach
is to incorporate time into the scoring functions of static KGE methods. For
instance, HyTE [8] learns to assign a hyperplane for each time point. For each
hyperplane, it learns the temporal embeddings of entities and relations using the
TransE scoring function [4]. Since the hyperplanes are learned independently, it
is not able to model the dependencies between the time points. Moreover, both
TNT-ComplEx [18] and TIMEPLEX [14] are based on ComplEx [32] and learn
complex-valued embeddings for entity, relation and time points. TNT-ComplEx
extends ComplEx by adding a new factor and solve a tensor completion problem.
TIMEPLEX adds multiple time-dependent components to the scoring function
and also takes into account additional learned features such as temporal con-
straints. TIME2BOX [6] extends the box embedding idea [29] by time-aware
boxes and allows atemporal and temporal facts. Unlike TEMT, these models do
not bene�t from external information such as textual descriptions of entity and
relations. Furthermore, these models are transductive so they cannot predict on
unseen entities.

Recent works on text-enhanced static KGs employ pre-trained language mod-
els for static KGC [38, 9, 20, 34, 2]. The textual descriptions are fed into pre-
trained language models (PLMs), that store real-world knowledge in their param-
eters, to obtain rich contextual entity/relation representations. However, they
ignore the dynamics in which the relations between entities hold in a time inter-
val. Only a few studies combines LMs and TKGs. ECOLA [13] jointly optimizes
the LM and TKG embedding objectives via combining their loss functions. It re-
trieves textual information from news articles that correspond to speci�c dates.
Moreover, it does not focus on time interval prediction. By contrast, TEMT
leverages entity/relation names and descriptions from Wikipedia pages for time
interval prediction. Similar to TEMT, SST-BERT [7] combines the textual in-
formation of entities/relations with time to get a plausibility score of a temporal
fact. However, it utilizes relation paths with a primary focus on relation predic-
tion whereas TEMT focuses on time interval prediction.

6 Conclusion

We propose TEMT, a model for text-enhanced temporal knowledge graph com-
pletion. TEMT outperforms state-of-the-art methods on the YAGO11k dataset
and achieves competitive results on the Wikidata12k dataset. To the best of our
knowledge, TEMT is the �rst method that is capable of performing time inter-
val prediction on unseen entities. As a future work, we plan to investigate other
pre-trained language models e.g. RoBERTa [21] and time encoding methods. We
also plan to incorporate structural information into TEMT's fusing function.
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7 Appendix

7.1 E�ect of Number of Negative Samples

Table 6. Time prediction performance with respect to the number of negative samples.

gIOU@1 aeIOU@1 gaeIOU@1 gIOU@10 aeIOU@10 gaeIOU@10

YAGO11k

#Entity-corrupted

16 14.67 1.37 0.34 42.82 4.73 2
32 21.29 0.65 0.24 44.72 3.14 1.78
64 22.61 5.35 2.49 39.29 11.55 7.34
128 4.77 0.46 0.1 35.09 1.52 0.68

#Time-corrupted

16 44.24 11.36 9.05 58.71 32.45 28.38
32 41.17 12.78 9.77 59.54 33.38 29.39
64 39.50 13.14 9.59 60 34.02 30.03
128 38.60 13.48 9.61 60.65 34.33 30.34

ind-YAGO11k

#Entity-corrupted

16 26.96 4.8 2.22 40.52 10.81 6.69
32 32.75 1.96 1.08 47.55 6.99 4.73
64 11.99 1.29 0.33 33.01 2.11 1.11
128 3.28 0.22 0 20.72 0.39 0.06

#Time-corrupted

16 47.47 14.39 12.19 61.64 36.23 33
32 41.89 15.31 11.51 62.08 37.50 34.17
64 41.79 14.12 10.71 63.70 37.61 34.6
128 37.20 14.81 10.15 60.07 36.73 33.32

We conduct an empirical study to see how sampling types discussed in Section
3 a�ect the performance of TEMTND. We analyze di�erent number of entity-
corrupted and time-corrupted negative samples on YAGO11k and ind-YAGO11k
datasets. The results are reported in Table 6. We perform the same experiments
on Wikidata12k and ind-Wikidata12k as well, however, we do not include their
results here, for the sake of brevity.

The results in Table 6 show that the entity-corrupted negative sampling
performs worse than the time-corrupted negative sampling for both datasets.
Since the time interval prediction also requires the model to distinguish facts with
di�erent time points, this di�erence is expected. Moreover, in time-corrupted
cases, the number of negative samples does not result in marginal changes in
gaeIOU@1 metric, which is the most stringent metric.
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Fig. 3. Time prediction evaluation terms

Table 7. The variance values over the test set

Methods gIOU@1 aeIOU@1 gaeIOU@1 gIOU@10 aeIOU@10 gaeIOU@10

YAGO11k

TEMTN 0.0485 0.0286 0.0317 0.0546 0.0894 0.1037
TEMTND 0.0466 0.0246 0.0280 0.0466 0.0832 0.0990

Wikidata12k

TEMTN 0.0411 0.0203 0.0223 0.0385 0.0670 0.0828
TEMTND 0.0424 0.0281 0.0334 0.0407 0.0716 0.0897

ind-YAGO11k

TEMTN 0.0478 0.0291 0.0330 0.0522 0.0953 0.1097
TEMTND 0.0499 0.0290 0.0331 0.0636 0.1013 0.1178

ind-Wikidata12k

TEMTN 0.0411 0.0209 0.0238 0.0453 0.0746 0.0897
TEMTND 0.0482 0.0292 0.0332 0.0450 0.0803 0.0969

7.2 Evaluation Terminology

In this section, we illustrate the evaluation terms employed within our interval
metrics. In Figure 3, we demonstrate two scenarios when the predicted interval
overlaps with the gold interval (top �gure) and when it does not (bottom �gure).
In the case of the former, given Ip = [2002, 2006] and Ig = [2004, 2008], we get the
following: the hull(Ip, Ig) = [2002, 2008], and the overlap(Ip, Ig) = [2004, 2006].
In the latter case, given Ip = [2001, 2003] and Ig = [2005, 2008], then the
hull(Ip, Ig) = [2001, 2008] and |gap(Ip, Ig)| = 3.

7.3 Variance Analysis

Since our experimental results are averaged over the test triples, we report the
variance values in Table 7. The results across the datasets and the variants
illustrate the e�ectiveness of our model.
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