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Abstract. Past works have shown knowledge graph embedding (KGE)
methods learn from facts in the form of triples and extrapolate to
unseen triples. KGE in hyperbolic space can achieve impressive per-
formance even in low-dimensional embedding space. However, existing
work limitedly studied extrapolation to under-represented data, including
under-represented entities and relations. To this end, we propose HolmE,
a general form of KGE method on hyperbolic manifolds. HolmE ad-
dresses extrapolation to under-represented entities through a special treat-
ment of the bias term, and extrapolation to under-represented relations
by supporting strong composition. We provide empirical evidence that
HolmE achieves promising performance in modelling unseen triples, under-
represented entities, and under-represented relations. We prove that main-
stream KGE methods either: (1) are special cases of HolmE and thus sup-
port strong composition; (2) do not support strong composition. The code
and data are open-sourced at https://github.com/nsai-uio/HolmE-KGE.
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1 Introduction

Knowledge graphs (KGs) refer to multi-relational graphs that represent facts
in the form of subject-relation-object triples. Studies in KG embedding (KGE)
strive to represent KGs numerically via link prediction, enabling the possibility
to leverage powerful machine learning (ML) in many practical applications, such
as predicting interactions between drugs and targets [12] or diseases [16].

The extrapolation of KGE models to unseen triples (i.e., predicting unseen
links) is the focus of current studies. Many past works have achieved promising
results. Translational models have good performance as well as transparent geo-
metrical explanations [3]. KGE models in hyperbolic space achieve impressive
performance even in low-dimensional space, due to their expressiveness for hierar-
chical structures [6]. However, extrapolation is multi-faceted; past work limitedly
discussed the extrapolation to under-represented data, i.e., long-tail data, which
includes under-represented entities, and relations [33,35].

We argue that for good extrapolation to under represented entities, a special
treatment to the bias terms in KGE models is needed. Many past models adopt
scoring functions with entity-specific bias terms to evaluate the probability of
predicted entities (higher score, higher chance to be predicted) [5,6,1]. We observe
that the bias terms learned from the training set are highly correlated with the
entity distribution in the training set (Fig. 1b). In benchmark datasets such as
WN18RR and FB15k-237, the latter is also highly correlated with the entity
distribution in the test set (Fig. 1a). This makes exploitation possible: to simply
assign higher scores to entities that are more frequent via giving higher biases to
these entities. In this regard, the bias terms essentially serves as prior probabilities
of the entities in the training set. Adopting the bias terms assumes that the
entity distribution of the training set is similar to that in the test set, which is
true for benchmark datasets , but not necessarily true for many real-world cases,
where most entities in test data are under-represented. In these cases, the use of
bias terms can lead to performance deterioration.

a b

FB15k-237 AttH (Chami et al., 2020)

Fig. 1: (a) High correlations of the entity frequency
(occurrence of triples) in the training set with that
in the test set, and (b) with the scoring bias terms
bt of a KGE model [6].

On extrapolation to under-
represented relations, we pro-
pose the notion of strong
composition, The entire em-
bedding space for relations
of strong composition KGE
model supports composition
(Fig. 2), contrasting to weak
composition KGE, whose em-
bedding space only has a sub-
space that supports composi-
tion. The key difference is that,
weak composition KGE would
assume relations to be not
compositional and tend to put
them into the sub-space not
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supporting composition, when the compositional relations are under-represented
in the training set. Practically, strong composition KGEs can better model under-
represented relations, as these relations are not embedded in sub-spaces where
composition patterns are not supported.

To these ends, we propose Holme that addresses multi-fold extrapolation: to
unseen triples, to under-represented entities, and to under-represented relations.
Our contributions are summarised as below:
– We give a detailed analysis of extrapolation in multiple aspects (Sect. 3),

including extrapolation to: (1) unseen triples; (2) under-represeted entities; (3)
under-represented relations;

– We propose a general form of KGE method HolmE, consisting of rotation
and translation in product space of manifolds (Sect. 4). We provide extensive
empirical evidence (Sect. 5) that HolmE outperforms SotA in low-dimensional
space in multiple aspects of extrapolation.

– We give in-depth analysis of the influence of biases of KGE models (Sect. 5.3)
and argue that the bias term should be treated with special care, depending
on the the assumption whether the test data has an entity distribution similar
to that of the training data.

– We provide theoretical proof that HolmE supports strong composition, and
that main stream KGE methods are either special cases of HolmE and thus
support strong composition or they do not satisfy strong composition (Sect. 4).

2 Related Work

Fig. 2: Difference between weak composition and
strong composition: models satisfying weak composi-
tion will tend to embed r1 and r2 in a sub-space that
does not satisfy composition if r3 (or the composi-
tion pattern) is under-represented in the training set;
models satisfying strong composition do not have
this problem, because their whole embedding space
G satisfies composition.

In general, KGE studies have
explored in two directions:
expressive spaces for entity
embeddings, and appropriate
mathematical mappings for re-
lation embeddings.
Geometric space. The first
group of work has focused
on Euclidean spaces, includ-
ing TransE [3], TransR [21].
Later 2D complex space is ex-
plored, e.g., ComplEx [27], Ro-
tatE [25]. Hyperbolic space
refers Riemannian distance
spaces with negative curva-
ture. Hyperbolic embedding
achieves good performance
even in low-dimensional em-
bedding due to its high expres-

sivity and suitability for hierarchical structure [6], which is common in KGs. Past
work explored various curvature spaces, such as AttH [6], TorusE [14], and GIE [5].
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Mapping modelling. Translational or rotational models have clear geometrical
explanations, and support many relation patterns, e.g., TransE [3], RotatE [25],
and some variants such as TransH [30], TransD [17]. Bilinear models [34,2] as
another group of KGE models treat both entities and relations as embedding
vectors/matrices and perform multiplication scoring.
Neural networks. These works, including ConvE [11], ConvKB [10] and
CompGCN [28] use graph neural networks to encode KGs [9]. Recently trans-
former, which exhibits strong modelling power in natural language models has
already been used for learning embeddings for various KG-related link prediction
tasks, such as RETRA [31]. These methods can also have good performance,
although they usually lack explicitly geometrical explanation on relation patterns
and do not explicitly support relation patterns [5,20,24].
Extrapolation to under-represented data. The fairness by the view of
the representation bias is becoming a hot topic in research [8,4,22]. In KGE-
related fields, this issue refers to the modelling of entities or relations that are
long-tail, i.e. under-represented in KGs. The existence of those long-tail data
deteriorate not only the modelling capability for those specific items, but also the
general performance of the mothods [9,13]. KGEs for long-tail entities are studied
in [33,19]. The work [33] uses neural networks to learn KG structure and attribute
information, and tested on datasets with attribute information, falling in a rather
different framework than KGE. Another work [19] tested their models on long-tail
entities of FB15k-237, but insufficiently explained what factors are important.
KGE for under-represented relations is partially covered in few-shot relation KG
completion. A series of work [35,29] trains neural networks or bilinear models on
triples with few-shot relations tested on datasets such as NELL, Wiki. This also
falls in a rather different framework. In summary, exploring fairness from the
view of representation bias, which focus on extrapolation to under-represented
data in the KGE framework still remains to be explored.

3 Problem Setup

3.1 Knowledge Graph Embedding (KGE)

A knowledge graph (KG) is a multi-relational graph, denoted as G = (E ,R,F),
where E is a set of entities, R is a set of binary relations between entities, and F
is a set of facts (edges) given in the triple form of (h, r, t) ∈ F ⊆ E ×R×E , with
h, t and r denoting the head entity, tail entity, and the relation in between.

A common setting of KGE problem seeks to solve the problem of link pre-
diction: (h, r, ?) (or (?, r, t)), namely given the query of the head entity (or tail
entity) and the relation, to find the most probable tail entity (or head entity). For
simplicity, we denote the query in both two directions as (h, r) → t. Let (P,G) be
an embedding space, where P is a distance space, G is a set of mappings that have
domain and range defined on P, and s is a scoring function: s : P × G × P → R.
The KGE problem aims to find an embedding from G to (P,G) that (i) maps
entities h, t ∈ E to vectors eh, et ∈ P; (ii) maps each relation r ∈ R to a map
gr ∈ G such that s(eh, gr, et) ranks how probable that (h, r, t) ∈ F .
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3.2 Riemannian Geometry

We briefly introduce Riemannian geometry and refer the readers to textbooks [32].
A Riemannian manifold is a distance space where the distance between two
points are characterised by a Riemannian metric. A hyperbolic space is a Rie-
mannian manifold with constant negative curvature −κ and dimension d as
Hd,κ := {x ∈ Rd | ||x||2 < 1

κ}, where || · || denotes the L2 norm.
For each point on a non-Euclidean manifold x ∈ Hd,κ, the tangent space T c

x
is a d-dimensional vector space containing all possible directions of paths in Hd,κ

leaving from x. The transformation of x on Hd,κ to the T c
x is referred to as the

logarithmic map, and from T c
x to Hd,κ the exponential map. Their closed-form

expressions at the origin:

expκ0 (e) = tanh(
√
κ||e||) e√

κ||e||
logκ0 (e) = arctanh(

√
κ||e||) e√

κ||e||
(1)

Following previous work, the translation in hyperbolic space is defined as the
Möbius addition [15], denoted as ⊕κ, which provides an analogue to Euclidean
addition for hyperbolic space:

x ⊕κ y =
(1 + 2κ ⟨x,y⟩+ κ||y||2)x + (1− κ||x||2)y

1 + 2κ ⟨x,y⟩+ κ2||x||2||y||2
. (2)

The distance on Hd,κ is defined as:

dκ(x,y) =
2√
κ
arctanh(

√
κ|| − x ⊕κ y||) (3)

Product space of hyperbolic space: Pm,n,κ of dimension d = m · n consists

of m component spaces Hn,κ of dimension n: Pm,n,κ =

m times︷ ︸︸ ︷
Hn,κ × . . .×Hn,κ .

A vector on Pm,n,κ can be decomposed into m sub-vectors in Hn,κ of dimension
n. For any x,y ∈ Pm,n,κ, where x = (x1, . . . ,xm), y = (y1, . . . ,ym), the Möbius
addition ⊕κ can be extended to ⊕κ

P on Pm,n,κ:

x ⊕κ
P y = (x1 ⊕κ y1, . . . ,xm ⊕κ ym). (4)

The distance between x,y is calculated as the sum of all Riemannian distances
between the sub-vectors xi,yi (Eq. 5).

dκP(x,y)
2 =

m∑
i=1

(
2√
κ
arctanh(

√
κ|| − xi ⊕κ yi||)

)2

. (5)

3.3 Extrapolation

Extrapolation to unseen triples. This is the most studied part in the past
work, which refers to the ability of models that can extrapolate from seen facts
to unseen facts. Commonly, a KG is split into the training set Ftr, validation
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set Fval, and test set Ftst. The Ftr is used to train the KGE model, the Fval

is to select the hyper-parameters of the KGE model, and Ftst is to test the
extrapolation, where the three sets do not share any triples.
Extrapolation to under-represented entities. Under-represented entities are
those entities that have a limited number of occurrence in the training set Ftr. We
formulate it as entities with frequency less than a threshold ϵe: e ∈ {e|fe < ϵe},
where ϵe should be a reasonable number depending on actual situations. A good
KGE model should still perform well on triples that contain under-represented
entities. Past work rely on learning biases for different entities, which essentially
service as a term that adjusts the scores to match the prior probability of the
entities. This approach has a strong drawback: it assumes the prior probabilities of
the entities are similar across the Ftr and Ftst as in Fig. 1. This is not guaranteed
to be true in real-world situations. For example in industry the KGE models can
trained on large general dataset but applied on specific test sets. This significantly
limits the extrapolation of KGE models to datasets whose prior probabilities are
different from the training set. A better solution would be to decide the usage of
the prior probabilities of entities depending on the actual situations.
Extrapolation to under-represented relations. Under-represented relations
are relations that have a limited presence in the training data Ftr. We formulate
it as relations with a frequency less than a threshold ϵr: r ∈ {r|fr < ϵr}.

3.4 Composition Patterns

We differentiate between weak composition patterns and strong composition
patterns. An intuitive understanding of both is provided in Fig. 2, with formal
definitions presented below.
Weak Composition. A KGE model (P,G, s) satisfies weak composition if there
exist g1, g2, g3 ∈ G such that ∀e, e′, e′′ ∈ M, we have g1(e) = e′ ∧ g2(e′) = e′′ ⇒
g3(e) = e′′.
Strong Composition. A KGE model (P,G, s) satisfies strong composition if for
any g1, g2 ∈ G, there exists g ∈ G such that ∀e, e′, e′′ ∈ Ment, we have g1(e) =
e′ ∧ g2(e′) = e′′ ⇒ g(e) = e′′.

4 Method: HolmE

We aim to design a KGE model that can (1) encode strong relation patterns such
as symmetry, inversion and strong composition; (2) learns KG embeddings in
Riemannian space that allows better expressivity in low-dimensional space; (3)
possesses good extrapolation to unseen triples, under-represented entities, and
relations. We elaborate on the formulas of HolmE and the rationale behind them;
then prove HolmE supports strong relation patterns; and then compare HolmE
to representative KGE methods.
Intuition. HolmE decomposes the embeddings of the head entity in the manifold
Pm,n,κ (Fig. 3.0) to sub-vectors in the component spaces of the product space
Hn,κ (Fig. 3.1), and performs relation-specific translation and rotation to the
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Fig. 3: HolmE performs relation-specific translation and rotation in component spaces of
the product space (illustrated with 3D balls, with the shape Pm,n,κ,m, n, κ indicate the
number of component spaces, the component space (Hn,κ) dimension and the curvature
of the hyperbolic space respectively. )

sub-vectors (Fig. 3.2); then, the sub-vectors are concatenated (Fig. 3.3) to the
predicted embedding of the tail entity (Fig. 3.4). We give the general form of
HolmE as follows:

Definition 1. Let (P,G) be the embedding space, where entity embedding space
P = Pm,n,κ, and relation embedding space G is a group of mappings of the form:

gr(eh) = ar ⊕κ
P (Ar · eh). (6)

with parameters of relation-specific translation, ar ∈ Pd,n and rotation Ar ∈
(SO(n))m (m-times production special orthogonal matrix SO(n)); ⊕κ

P is the
extended Möbius addition (defined in Eq. 4) on product space P with curvature κ.

The scoring function s of a tuple (h, r, t) is defined by

s(eh, gr, et) = −dκP (gr(eh), et) [+bh + bt]. (7)

where eh, et ∈ P are head and tail entity embeddings; bh and bt are biases of the
head entity and the tail entity (they are optional and thus in brackets, details see
the bias paragraph and Sect. 5.3); the distance dκP defined in Eq. 5 is calculated
on the product space P.

We now elaborate on each part of HolmE and the rationales behind them in
the following paragraphs.
Entity embedding with learned curvature. The entities are embedded as
vectors in a hyperbolic manifold M with a learned constant curvature κ (Fig. 3.0).
They are decomposed into sub-vectors in a product space P with a series of n
dimensional component spaces (Fig. 3.1). These component spaces also share
the same κ. The curvature is learned because it adjusts the embedding space to
better distribute points throughout the space [6]. We adopt a constant curvature
because it is required to support strong composition1.
Relation embedding. The relation mapping gr consists of two components,
introduced as below:
1 Proof see https://github.com/nsai-uio/HolmE-KGE/blob/main/Proof.pdf.



8 Z. Zheng et al.

Rotation in product space. A tempting choice is to model rotation simply as a
high dimensional rotation matrix, which contains a high number of parameters
and is very difficult to learn. HolmE decomposes a high dimensional rotation into
the product space with a series of n dimensional component spaces of curvature
κ (Fig. 3.2). The rotation matrix Ar is a special orthogonal matrix (namely
|Ar| = 1), in the form of a diagonal rotation matrix consisting of a series of
rotation matrices of n dimensions: Ar = diag[Rn(θr,1), . . . ,Rn(θr,d/n)], where
Rn(θr) is a n dimensional rotation matrix, (n = 2, 3, . . .). When n = 2, Rn(θr)
is the special case of rotation in complex space (Eq. 8), and HolmE becomes a
holomorphic function (this is where the name HolmE comes from).

Rn(θr) :=

[
cos(θr) −sin(θr)
sin(θr) cos(θr)

]
. (8)

Translation in product space. The translation of HolmE is performed with extended
Möbius addition (Eq. 4) in the component spaces with the curvature κ (Fig. 3.2).
This means the Möbius addition is performed between the sub-vectors of ar and
the resulting vectors of the rotation (Ar ·eh), where each sub-vector has the shape
Pd,n. We adopt the translation in the product space instead of high dimensional
translation, different from past work [6], because translation in the product space
matches the rotation in the product space and thus geometrically makes more
sense, and this matching is required by strong composition. Important to note is
that the Möbius addition here is the left addition, namely the translation vector
ar must be on the left hand side, for ensuring strong composition1.

Scoring function & Biases. HolmE has two forms of scoring functions: (1)
one is simply the distance s = dκP (gr(eh), et), which gives HolmE; (2) the
other one is the distance adding the biases of head entity and tail entity s =
dκP (gr(eh), et) + bh + bt, which results in HolmE-b. The two forms of HolmE
should be used in different scenarios. HolmE-b should be used when the test
set is assumed to have an entity distribution similar to the training set; HolmE
should be used in other cases. Details see Sect. 5.3.

Loss and training of HolmE. We adopt cross-entropy loss with uniform
negative sampling as past works:

L =
∑

(h,r,t)∈F∪F ′

log(1 + exp(−ys(eh, gr, et))),

where F and F ′ denote training examples and negative examples respectively.
The negative examples are sampled uniformly from all possible triplets obtained
by perturbing the tail entities in triplets (h, r, t). The label y is 1 if the triplet
is training example, else is -1. The training setting follows the initialisation in
tangent space as [7]. In particular, all parameters are initialised and optimised in
the tangent space of the manifold using standard Euclidean techniques. These
parameters are mapped to the manifold with exponential map, which ensures
the embeddings are in the desired space [7].
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4.1 Model Analysis

Benefits. HolmE has two major benefits and several supporting benefits: (1) The
design of HolmE gives clear geometric meaning and relatively good transparency
(illustrated in Fig. 3). (1.1) HolmE decomposes high dimensional computation
in product space and saves parameters. (1.2) HolmE has a matching rotation,
translation and distance function on the product spaces. (2) HolmE has good
extrapolation to unseen triples, under-represented entities and relations(Sect. 5).
(2.1) HolmE provides optional biases applied according to actual scenarios. (2.2)
HolmE supports strong composition (Theorem 1).

Theorem 1. The KGE defined by Definition 1 satisfies strong composition2.

Complexity Analysis. The time complexity of HolmE mainly comes from
scoring calculation and cross entropy loss calculation. While the operation for
calculating loss is consistent across various KGE models, the complexity of the
score function in d dimentional HolmE is linear, i.e., O(d) for each triple. This
complexity is comparable to that of traditional KGE models such as TransE
and lower than that of neural network-based models such as ConvE, as no
additional graph aggregation operations are incorporated, making it more efficient
in scenarios where computational simplicity and speed are critical. In terms of
space complexity, for a KG with |E| entities and |R| relations, HolmE need
d |E| + 2d |R| parameters, while HolmE-b need more d parameters for entity-
specific bias term. Compared with other Riemannian KGE, such as AttH and
GIE, (both need at least (d + 1) |E| + 3d |R| parameters), HolmE need fewer
parameters. Compared with other Euclidean KGE methods, HolmE achieves
similar representation performance in a lower embedding dimension [6,1].

WN18RR YAGO3-10

Fig. 4: Entity frequency in training and test set.

Limitations. HolmE is lim-
ited in providing theoretically
strict mappings satisfying the
transitivity pattern and map-
ping patterns of one-to-many
(1-to-N), many-to-one (N-to-
1), and many-to-many (N-to-
N). However, empirical stud-
ies show that HolmE still has
good performance on these
relation patterns or mapping

patterns, due to the mechanism in KGE that selects the best scored predicted
tail embedding instead of the exact tail embedding (see Appendix).
Comparison to TransE/RotatE. HolmE adopted similar components of
translation and rotation as in other translational KGEs. HolmE is a general form
that unites KGEs supporting strong composition, including TransE and RotatE.
KGEs like neural networks, bilinear models, mixture models cannot guarantee to
satisfy strong composition because they lack explicit geometric explanation and
the notion of relation embedding as mapping is not clearly defined.
2 Proof see https://github.com/nsai-uio/HolmE-KGE/blob/main/Proof.pdf.
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Comparison to hyperbolic KGE. MurP [1] adopts translation on high dimen-
sional hyperbolic space and does not adopt rotation. AttH [6] adopts rotation
in product space, but translation and distance function on high dimensional
manifolds, with the result that AttH does not support strong composition. GIE [5]
is a mixture model of different curvature spaces and not pure hyperbolic, and
also does not support strong composition. In contrast, HolmE has rotation, trans-
lation, distance on product space and supports strong composition; HolmE also
has a special treatment to the bias terms.

5 Experiments

Table 1: Dataset statistics. arfe, arfr: av-
erage of entity and relation frequency. .

Dataset #ent #rel #tri arfe arfr
WN18RR 41k 11 93k 4.3 7.9k
FB15k-237 15k 237 310k 37.5 1.1k
YAGO3-10 123k 37 1M 17.5 29.1k

We evaluates these hypotheses: (H1)
HolmE outperforms SotA on extrap-
olation to unseen triples in low-
dimensional space; (H2) HolmE out-
performs SotA on extrapolation to
under-represented data; (H2.1) in sce-
narios where entity’s frequency distri-
bution between the training and testing sets are sufficiently different, HolmE
outperforms others; (H2.2) in scenarios where relation’s distribution between the
training and testing sets are sufficiently different, HolmE outperforms others.

5.1 Overall Experiment Design

To test H1, we conduct experiments (Sect. 5.2) to train HolmE and baseline
KGE models on Ftr and test on unseen triples Ftst. This follows the standard
setting of past work. Moreover, we design experiments evaluating the influence
of strong composition. To test H2 (H2.1 in Sect. 5.3, H2.2 in Sect. 5.4), we plot
the MRR along entity (Sect. 5.3) or relation frequency to evaluate performance
of various models. In addition, we split the benchmark data to create scenarios
where the frequency distribution of entities and relations are sufficiently different,
we test the model performance on these scenarios. In all of our experiments,
we conducted a hyperparameter search for the batch size b (chosen from {500,
1000, 2000}); optimizer op (selected from Adam or Adagrad); the learning rate
lr (for Adam ranging from [0.0001, 0.005], for Adagrad ranging from [0.01, 0.1]);
negative sampling size neg (chosen from {50, 150, 200}). For the high-dimensional
embedding, the embedding size is searched in the range of {200, 400, 500}. All
the experiments are done using GPU Nvidia A100-80GB (training and testing
models) and CPU Core(TM) i7-11850H (other scripts) .

5.2 Extrapolation to Unseen Triples

Benchmark Datasets. We use 3 standard datasets: WN18RR [11], FB15k-
237 [26], YAGO3-10 [23]. The statistics of these datasets are reported in Tab. 1.
Fig. 1a and Fig. 4 indicate in all three benchmark datasets, there is high correlation
between entity frequency in the training and test set.
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Table 2: Dataset statistics for test sets with under-represented entities and relations.
fu/ftotal indicates the number of test queries in the dataset defined by the number
of test queries in their original test sets of WN18RR/FB15k-237. Threshold is the
frequency to determine under-represented entities/relations such that under-represented
entities/relations always take about 80% of the total entities/relations.

Dataset #entities entity percentage #test queries fu/ftotal threshold
WN18RR-under-e 33k 81.0% 3487 55.6% 5
FB15k-237-under-e 11k 80.4% 18k 44.9% 47
Dataset #relations relation percentage #test queries fu/ftotal threshold
WN18RR-under-r 9 81.8% 1618 25.8% 7402.0
FB15k-237-under-r 189 79.7% 10k 26.5% 1282.4

Datasets of under represented entities. The datasets WN18RR-under-e and
FB15k-237-under-e are generated by selecting all triples with under-represented
target entities, where under-represented entities are entities with frequency less
than a threshold and stand for about 80% of total entities. Table 2 reports the
statistics of these new test data. Appendix shows that the different values of
threshold do not influence the validity of claims in the paper.

The series of test sets with different percentage of under-represented en-
tities shown in Fig. 7 is generated by random sampling. We denote the set
of triples of under-represented entities in the WN18RR or FB15k-237 as Fue

(with cardinality fue) and the set of other triples as Fwe (with cardinality
fwe). We want to generate a dataset with the percentage of triples with under-
represented entities of ptst. then the percentage of other triples is 1− ptst. For
each ptst, we would like to generate the test set repeatedly in five different
scales sc ∈ {20%, 40%, 60%, 80%, 100%}. Then the random sampling is per-
formed as: For a given ptst, for a scale sc ∈ {20%, 40%, 60%, 80%, 100%}, we
uniformly random sample fue×po triples from Fue and uniformly random sample
(fue × po)/ptst ∗ (1− ptst) triples from Fwe.
Datasets of under-represented relations. Similarly, the datasets WN18RR-
under-r and FB15k-237-under-r are generated by selecting all triples with under-
represented relations, where under-represented relation are relations with fre-
quency less than a threshold and stand for about 80% of total relations. Table 2
reports the statistics of these new test data.
Baselines. We compare HolmE and the variant with bias (HolmE-b) with three
types of baselines: (1) representative works that provide insights in this field,
including TransE [3], RotatE [25], and ComplEx-N3 [18]; (2) graph neural network
based models, including ConvE [11] and CompGCN [28] (2) Riemannian KGE,
including MurP [1], AttH [6], and a mixture model of Euclidean, sphere, and
hyperbolic space, GIE [5].
Evaluation Metrics. We adopt mean reciprocal rank (MRR), calculated as the
mean of reciprocal ranks of the predicted entity; hits at k (H@K, k ∈ {1, 3, 10}),
calculated as the percentage of the correct triples among the top k predictions.
Results Analysis. The results (Tab. 3) show that the HolmE models can
outperform baselines in low-dimensional embedding space. On WN18RR, FB15k-
237, YAGO3-10, the best HolmE model outperform the best published baseline by
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Table 3: HolmE outperforms SotA in link prediction for extrapolation to unseen triples
in low-dimensional space (d = 32). Best score in bold and second best underlined. Sources
are indicated by citations, or generated/reproduced by us with open source code.

M Model WN18RR FB15k-237 YAGO3-10
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

R TransE .177 .031 .269 .447 .110 .066 .114 .196 - - - -
C RotatE [6] .387 .330 .417 .491 .290 .208 .316 .458 - - - -
C ComplEx-N3 [6] .420 .390 .420 .460 .294 .211 .322 .463 .336 .259 .367 .484
R ConvE .438 .410 .440 .520 .325 .237 .356 .501 .430 .335 .479 .580
R CompGCN .467 .433 .481 .532 .323 .237 .351 .500 .438 .329 .502 .586
H MurP [6] .465 .420 .484 .544 .323 .235 .353 .501 .230 .150 .247 .392
H AttH [6] .466 .419 .484 .551 .324 .236 .354 .501 .397 .310 .437 .566
M GIE .472 .424 .492 .558 .320 .230 .350 .503 - - -
P HolmE-b .486 .440 .502 .575 .329 .238 .358 .511 .454 .349 .518 .655
P HolmE .466 .415 .489 .561 .331 .237 .366 .517 .441 .333 .507 .641

Table 4: Verifying the influence of strong composition with pretraining and fine-tuning

Training set: Pretrained on train-remain Fine tuned on train-com
Test set test-remain test-com total-test test-remain test-com total-test
AttH 0.324 0.064 0.294 0.227 0.272 0.228

AttH-ub 0.318 0.105 0.294 0.228 0.248 0.229
HolmE-b 0.337 0.090 0.342 0.246 0.285 0.247
HolmE 0.331 0.050 0.299 0.236 0.276 0.237

3%, 2.2%, and 14.4%, respectively. HolmE is sometimes worse than models with
bias (GIE, HolmE-b), because the three datasets have similar entity distribution
in the training set and test set (Fig. 1a and Fig. 4). Though, HolmE can still
perform impressively well, especially on FB15k-237. We postulate in this case,
the gain of supporting strong composition sometimes outmatches the loss of
dropping the bias terms.

101 102

Embedding dimension

0.3

0.4

0.5

M
R

R HolmE
GIE
AttH
ComplEx_N3

Fig. 5: MRR for KGE models with d ∈
{10, 16, 20, 32, 50, 200, 500} on WN18RR.

Link prediction perfor-
mance along embedding
dimension. Following [6], we
test HolmE with different em-
bedding sizes and compare
with representative baselines.
The results (Fig. 5) reveal
that HolmE achieves impres-
sive performance in low dimen-
sions; and it consistently out-
perform these baselines in a
wide range of dimensions.
Influence of strong compo-
sition. To verify that strong composition can really improve model performance
for under-represented relations, we design experiments of fine tuning. The ra-
tionale behind is that strong composition has entire relation embedding space
supporting composition, thus under-represented relations will also be embedded
to support composition. To verify this, we remove a subset of triples from the
training set of FB15k-237, such that some relations (denoted as rcom) that sup-
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Fig. 6: MRR of four models (Tab. 3) along entity and relation frequency for FB15k-237.
Left: for triples with under-represented entities, unbiased model (HolmE, AttH-ub)
outperform biased model (HolmE-b, AttH), and HolmE outperform other models. Right:
HolmE achieves better performance for triples with under-represented relations.

port composition pattern become under-represented in the remaining training set
(train-remain). The removed subset is denoted as train-com. Correspondingly, we
also remove all triples that contain rcom from the test set of FB15k-237 (test-
total), the remaining test set is denoted as test-remain, and the removed subset
is denoted as test-com. KGE models will be first pre-trained on FB15k-237, and
tested on test-remain and test-com. Then these pre-trained models will be fine-
tuned with train-com and again tested on test-remain and test-com. The results
(Tab. 4) shows after fine-tuning, HolmE always outperform their counterpart in
the case of with bias or without bias: HolmE-b > AttH, HolmE > AttH-ub. The
performance of all model deteriorate on test-remain and increases significantly
on test-com. We postulate that HolmE models can easily adapt the embeddings
learned on train-remain for under-represented relations to new embeddings when
the composition patterns are revealed by train-com. While AttH models are worse
in this regard, we postulate the reason is the relation embeddings learned by
AttH are in the sub-space that does not support composition after pretraining
on train-remain, and need more change to be adapted to the sub-space that
supports composition when the composition patterns are revealed by test-com.
HolmE models are easier to adapt the relation embeddings because the its entire
relation embeddings space supports strong composition.

5.3 Extrapolation to Under-Represented Entities

Correlations between entity distribution and bias terms. To verify H2.1,
we test the correlations between entity frequency in the training set and test set
(Ftr−Ftst), between the training set and the bias terms (Ftr−bt) for the WN18RR
and FB15k-237. The results show that these distributions are highly correlated
(Fig. 1 and Appendix). Especially FB15k-237 exhibits a Pearson correlation
coefficient of 0.91 for Ftr − Ftst. The other correlations are also evident, and
sometimes of higher orders than simple linear correlation.
Model performance influenced by entity frequency. To verify H2.1, we
plot the number of entities along the entity frequency (occurrence of triples) in
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Table 5: Testing extrapolation to under-represented entities and relations. Models
without bias (HolmE, AttH-ub) outperform models with bias (HolmE-b, AttH) on test
set of triples only with under-represented entities. HolmE outperforms SotA models.

WN18RR-under-e FB15k-237-under-e WN18RR-under-r FB15k-237-under-r
Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
AttH .371 .335 .383 .437 .142 .078 .148 .269 .312 .242 .338 .434 .390 .301 .426 .566
AttH-ub .391 .355 .402 .463 .148 .086 .154 .271 .276 .209 .300 .408 .392 .304 .425 .568
HolmE-b .391 .350 .403 .472 .148 .081 .157 .280 .341 .265 .374 .494 .403 .311 .443 .579
HolmE .401 .355 .419 .483 .162 .093 .175 .297 .308 .227 .342 .461 .413 .322 .452 .590

the training set of FB15k-237 (Fig. 6.left), which has a reasonably rich set of
relations and entities. We also plot performance of four KGE models in Tab. 3
along the entity frequency in Fig. 6.left. We choose to compare AttH with HolmE
because it is a representative hyperbolic KGE model and it is the best SotA
model in low-dimensional space for FB15k-237. In addition to the original AttH
version with bias, we add an extra version of AttH without bias (denoted as
AttH-ub). Fig. 6.left reveals several observations: (1) Most entities are under-
represented and have very low frequency compared to the mean frequency of 37.5
and the maximum frequency of 7614; over 10k entities have samples below 50.
(2) All model performance is relatively poor for triples with under-represented
entities, and increases as the entity frequency increases; (3) Models without bias
(HolmE, AttH-ub) outperform models with bias (HolmE-b, AttH) for triples with
under-represented entities; and the other way around for other triples. This is
further studied in the next paragraph.

Scenarios where entity frequency differs between the training and the
test set. To better understand the influence of bias and under-represented entities
on model performance and further verify H2.1, we create subsets of test data of
the two benchmark data sets, which include only triples with under-represented
entities (WN18RR-test-under-e and FB15k-237-test-under-e). To quantify under-
represented data, we consider the Pareto principle (80%-20% principle) and
choose a frequency threshold (Fig. 6.left) such that 80% entities are regarded as
under-presented entities (the choice of threshold does not influence the validity
of the observations and our claims, see influence of threshold in Appendix ). We
test the same models in Fig. 6.left on these two test sets. The results (Tab. 5)
shows that models without bias (HolmE, AttH-ub) are persistantly better than
models with bias (HolmE-b, AttH), and HolmE outperforms other models.

To ensure the created test sets reveal systematic effect, we additionally create
a series of test sets with different percentage of triples with under-represented
entities via random sampling from the test set of FB15k-237 (Tab. 2). The same
four models are tested on these test sets. Fig. 7 reveals the tendency of model
performance along the percentage of triples with under-represented entities in
the test set. including these observations: (1) As the percentage of triples with
under-represented entities (ptst) increases in the test sets, all model performance
deteriorates; (2) As ptst increases, AttH-ub (without bias) gradually outmatches
AttH (with bias), and the degree that HolmE (no bias) outmatches HolmE-b
increases; (3) HolmE always outperforms other models.
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5.4 Extrapolation to Under-Represented Relations

Model performance influenced by relation frequency. To verify H2.2,
we plot the performance of KGE model trained on FB15k-237-train along the
relation frequency (Fig. 6.right). We can see for under-represented relations (rare
relations) HolmE models have better performance than AttH. For well-represented
relations (the very right bar), the performance of models is very close. The model
performance does not change monotonously along the relation frequency. This is
likely because the results are aggregated from both under-represented entities
and well-represented entities, leading to a complex trend.

0.6 0.7 0.8 0.9 1.0
Percentage of triples with under-represented entities

0.15

0.20

0.25

0.30

M
R

R

HolmE-b
HolmE
AttH
AttH-ub

Fig. 7: Each dot is an experiment on test sets
created based on FB15k-237. The lines are average
performance of five repeated experiments. Perfor-
mance of unbiased model (HolmE) increases as
percentage of triples with under-represented entities
increases. The results on the very left hand side are
namely in Tab. 3. The results on the very right hand
side are namely in Tab. 5.

Scenarios where relation
frequency differs between
the training and the test
set. To verify H2.2, we cre-
ate test sets of triples only
with under represented rela-
tions (WN18RR-test-under-r
and FB15k-237-test-under-r).
The under-represented rela-
tions are relations with fre-
quency lower than a threshold.
Similar to Sect. 5.3 we adopt
a threshold such that 80% re-
lations are under-represented
(the choice of threshold does
not influence the validity
of the observations and our
claims, see influence of thresh-
old in Appendix). We test the
four models as in Fig. 6.left on
these two datasets. The results (Tab. 5) shows that sometimes models with bias
are better than without bias (for WN18RR). We postulate it is because the
results are aggregated from both under-represented entities and well-represented
entities, and sometimes well-represented entities takes a major effect. Holme
models consistently outperform AttH models for under-represented relations for
both the cases of with bias or without bias. This confirms H2.2.

6 Conclusion

This work proposes Holme, a general form of hyperbolic KG embedding method
that addresses multi-fold extrapolation: to unseen triples, under-represented
entities, and relations (the latter two limitedly discussed in past work). We give
in-depth analysis of the influence of bias terms on model performance on under-
represented entities. We also show that Holme supports strong composition, with
the entire relation embedding space that support composition. We prove that
main stream KGE methods are either special cases of Holme and thus support
strong composition, or they do not support strong composition.
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A Result Details

Correlation between entity frequency and bias term. Fig. 8 shows that in
different data sets and models, there is strong correlation between bias term and
entity frequency.

a b

c d

Fig. 8: Correlation between bias term and entity frequency. a,b: Atth and HolmE in
FB15k-237 respectively; c,d: Atth and HolmE in WN18RR respectively.

Influence of entity and relation frequency threshold. Fig. 9 shows that
results for different choice of entity and relation frequency threshold does not
influence the validity of the observations and claims: (Fig. 9a) models without
bias (HolmE, AttH-ub) outperform their counterparts with bias (HolmE-b, AttH),
and HolmE outperform other models for triples with under-represented entities;
(Fig. 9b) the majority of entities are under-represented entities as long as the
threshold is not chosen to be extremely small, considering that the mean of
entity frequency is 37.5 and the maximum is 7614. The results are obtained on
FB15k-237. HolmE outperforms other models for triples with under-represented
relations (Fig. 9c); the majority of relations are under-represented relations as
long as the threshold is not chosen to be extremely small (Fig. 9d), considering
that the mean of relation frequency is 1148.2 and the maximum is 15989. The
results are obtained on FB15k-237.
Link prediction results in high dimension. As expected, embeddings in
different spaces achieve similar results in high dimensional space (Tab. 6), because
both Euclidean and hyperbolic spaces become expressive enough to represent
complex hierarchies in KGs [6]. Similar to the results in low-dimensional space,
HolmE (without bias) is slightly worse than the models with bias (GIE, HolmE-b),
although HolmE does not use the advantage of prior probabilities provided by
the bias term.
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Fig. 9: The choice of threshold does not influence the observations or claims

Table 6: HolmE achieves comparable results as SotA hyperbolic KGE in high dimen-
sional embedding space. Best score in bold and second best underlined. Sources are
indicated by citations, or reproduced by us with open source code.

M Model WN18RR FB15k-237 YAGO3-10
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

R TransE [3] .226 - - .501 .294 - - .465 - - - -
C RotatE [25] .476 .428 .492 .571 .338 .241 .375 .533 .495 .402 .550 .670
C ComplEx-N3 [18] .480 .435 .495 .572 .357 .264 .392 .547 .569 .498 .609 .701
R ConvE .43 .40 .44 .52 .325 .237 .356 .501 - - - -
R CompGCN .479 .443 .494 .546 .355 .264 .390 .535 - - - -
H MurP [1] .481 .440 .495 .566 .335 .243 .367 .518 .354 .249 .400 .567
H AttH [6] .486 .443 .499 .573 .348 .252 .384 .540 .568 .493 .612 .702
M GIE [5] .491 .452 .505 .575 .362 .271 .401 .552 .579 .505 .618 .709
H HolmE-b .491 .445 .509 .584 .352 .260 .383 .542 .570 .497 .612 .701
H HolmE .479 .433 .497 .567 .352 .259 .389 .545 .546 .469 .597 .694

Table 7: Detailed analysis for relation
patterns on FB15k-237. Sym. : Sym-
metry, Asym.: ASymmetry, Inv.: Inver-
sion, Tran.: Transitivity, Comp.: Com-
position.

AttH AttH-ub HolmE HolmE-b
Sym. 0.322 0.312 0.330 0.336
Asym. 0.326 0.319 0.338 0.336
Inv. 0.319 0.312 0.331 0.329
Tran. 0.314 0.296 0.317 0.320
Comp. 0.279 0.273 0.292 0.292

Table 8: Detailed analysis for relation
mapping properties in low-dimensional
space on FB15k-237.

Task RMPs AttH AttH-ub HolmE HolmE-b

Predi- 1-to-1 .460 .458 .485 .478
cting 1-to-N .430 .411 .456 .459
Head N-to-1 .079 .077 .099 .085

(MRR) N-to-N .243 .235 .253 .253

Predi- 1-to-1 .452 .467 .475 .477
cting 1-to-N .060 .059 .077 .072
Tail N-to-1 .728 .725 .743 .742

(MRR) N-to-N .350 .343 .360 .360
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