
SC-Block: Supervised Contrastive Blocking
within Entity Resolution Pipelines

Alexander Brinkmann1[0000−0002−9379−2048], Roee Shraga2[0000−0001−8803−8481],
and Christina Bizer1[0000−0003−2367−0237]

1 University of Mannheim, 68131 Mannheim, Germany
{alexander.brinkmann,christian.bizer}@uni-mannheim.de

2 Worcester Polytechnic Institute, Worcester Polytechnic Institute
rshraga@wpi.edu

Abstract. Millions of websites use the schema.org vocabulary to an-
notate structured data describing products, local businesses, or events
within their HTML pages. Integrating schema.org data from the Seman-
tic Web poses distinct requirements to entity resolution methods: (1)
the methods must scale to millions of entity descriptions and (2) the
methods must be able to deal with the heterogeneity that results from
a large number of data sources. In order to scale to numerous entity
descriptions, entity resolution methods combine a blocker for candidate
pair selection and a matcher for the fine-grained comparison of the pairs
in the candidate set. This paper introduces SC-Block, a blocking method
that uses supervised contrastive learning to cluster entity descriptions in
an embedding space. The embedding enables SC-Block to generate small
candidate sets even for use cases that involve a large number of unique
tokens within entity descriptions. To measure the effectiveness of block-
ing methods for Semantic Web use cases, we present a new benchmark,
WDC-Block. WDC-Block requires blocking product offers from 3,259
e-shops that use the schema.org vocabulary. The benchmark has a max-
imum Cartesian product of 200 billion pairs of offers and a vocabulary
size of 7 million unique tokens. Our experiments using WDC-Block and
other blocking benchmarks demonstrate that SC-Block produces candi-
date sets that are on average 50% smaller than the candidate sets gen-
erated by competing blocking methods. Entity resolution pipelines that
combine SC-Block with state-of-the-art matchers finish 1.5 to 4 times
faster than pipelines using other blockers, without any loss in F1 score.

Keywords: Identity Resolution · Blocking · schema.org · Benchmarking
· Supervised Contrastive Learning

1 Introduction

The Web Data Commons (WDC) project regularly extracts schema.org data
from the Common Crawl3 [5]. The extraction4 from the October 2022 ver-
sion of the Common Crawl has shown that 2.5 million websites (hosts) use the

3 https://commoncrawl.org/
4 https://webdatacommons.org/structureddata/2022-12/stats/schema org subsets.html

2 A. Brinkmann et al.

schema.org vocabulary to annotate product offers, 1.2 million websites annotate
information about local businesses such as addresses and opening hours, and
50,000 websites annotate job postings. In total, 502 million records describing
products and 55 million records describing local businesses were extracted from
the Common Crawl. Due to the shallow coverage of the Common Crawl, the
extracted data only represents a fraction of the schema.org data available on
the Semantic Web. Applications seeking to integrate schema.org data from the
Semantic Web for use cases such as product recommendation, price comparison,
or complementing knowledge graphs face two challenges in the link discovery [2,
11, 35] step of their data integration and cleansing pipeline: (1) they require en-
tity resolution methods that can scale to millions of entity descriptions and (2)
these methods must be able to handle the heterogeneity that arises from using
data from multiple sources. A scalable blocking method is crucial for these use
cases as the pairwise comparison of all records is infeasible. Blocking [9, 40, 49]
employs a computationally inexpensive method to generate a set of candidate
pairs which likely contains most matches while being as small as possible. After-
wards, a matcher derives the final set of matching pairs using a computationally
more expensive and more precise matching method [30, 31, 33, 36].

In this paper, we propose SC-Block, a blocking method that applies su-
pervised contrastive learning to cluster records that likely describe the same
real-world entity in an embedding space. In this blocking-only scenario, SC-
Block is compared to different state-of-the-art blocking methods [34, 39, 49, 51].
Additionally, SC-Block and the two most competitive blockers are combined
with different state-of-the-art matching methods [6, 30, 31, 44] to evaluate the
F1 performance and runtime of complete entity resolution pipelines. The ex-
periments are conducted using existing entity resolution benchmarks as well as
WDC-Block, a large new benchmark which is introduced in this paper. Exist-
ing benchmarks that are used for evaluating blocking methods are either rather
small [33], mostly Wikipedia-related [17] or rely on synthetic data [41]. None of
the benchmarks uses large amounts of real-world e-commerce data originating
from numerous data sources. WDC-Block fills this gap by requiring the blocking
of product offers from 3,259 e-shops. In summary, this paper makes the following
contributions:

1. We propose SC-Block a blocking method which applies supervised con-
trastive learning to position records likely describing the same real-world
entity close to each other in an embedding space.

2. We introduce WDC-Block a new large blocking benchmark that requires
blocking schema.org product offers from the Semantic Web and features a
maximal Cartesian product of 200 billion record pairs and almost 7 million
unique tokens within the entity descriptions.

3. We show that SC-Block creates smaller candidate sets than state-of-the-art
blocking methods leading to pipelines that execute 1.5 to 2 times faster on
the smaller benchmark datasets and 4 times faster on the largest product
matching task of WDC-block without negatively affecting F1 scores.

SC-Block 3

4. We relate the training time of SC-Block to the overall runtime reduction of
entity resolution pipelines and show that the runtime reduction overcompen-
sates the training time of SC-Block for larger datasets.

The paper is structured as follows. Section 2 presents the WDC-Block bench-
mark. Section 3 introduces SC-Block and discusses its supervised contrastive
training. SC-Block and the impact of SC-Block on complete entity resolution
pipelines are evaluated in Section 4 and in Section 5, respectively. Related work
is discussed in Section 6. The new benchmark5 and the code6 for replicating all
experiments are available online.

2 WDC-Block: A Large Product Blocking Benchmark

This section introduces WDC-Block and compares it to blocking benchmarks
from the related work. WDC-Block is built by extending the WDC Products
entity matching benchmark7 [45] with additional product offers from the WDC
Product Data Corpus V20208. WDC Products is a multi-dimensional benchmark
which supports the evaluation of matching systems along combinations of three
dimensions: (1) amount of corner cases, (2) training set size, and (3) amount
of unseen entities in the test set. The product offers in WDC Products and the
WDC Product Data Corpus have been extracted from the Common Crawl using
schema.org annotations. The product offers are clustered by product identifiers
such as MPN and GTIN [45]. All offers in the same cluster describe the same
real-world entity. Record pairs from the clusters are classified as corner cases
if they are difficult to match for a range of baseline matchers [45]. 500 clusters
are selected as seen. The record pairs in the seen clusters are split into train,
validation and test sets. Afterwards, record pairs in the test set are replaced
with record pairs from unseen clusters until the desired percentage of unseen
record pairs in the test set is reached. For WDC-Block, we select the dataset
containing 80% corner cases, because corner cases are challenging for entity
resolution pipelines. We chose the largest training set of WDC Products as our
seed training set. We choose the test set with 50% unseen record pairs. This
ensures a balance between products that were part of the training set and those
that were not.

Three sizes of WDC-Block. To match the setup of previous blocking bench-
marks, we divided the WDC Products data into two separate datasets, A and
B. The maximum cardinality of matching records across datasets A and B is
15. We then extended these datasets with additional randomly selected offers
from the WDC Product Data Corpus V2020 to create three versions of WDC-
Block: a small version (WBsmall), a medium version (WBmedium), and a large
version (WBlarge). We ensure that the randomly selected records do not match

5 https://webdatacommons.org/largescaleproductcorpus/wdc-block/
6 https://github.com/wbsg-uni-mannheim/SC-Block/
7 https://webdatacommons.org/largescaleproductcorpus/wdc-products/
8 https://webdatacommons.org/largescaleproductcorpus/v2/index.html

4 A. Brinkmann et al.

existing records in the datasets to avoid introducing additional matching pairs.
Through these additional records and identical train, validation and test pairs
in WBsmall, WBmedium and WBlarge, we can measure the effect of significantly
increased vocabulary sizes (67K to 6.9M tokens) and large Cartesian products
(A × B between 2.5 · 107 and 2.0 · 1011 pairs) on the performance of blockers.
Table 1 provides statistics about the different versions of the WDC-Block bench-
mark and other blocking benchmarks from related work. The vocabulary size is
defined as the number of unique tokens in all datasets that belong to the bench-
mark task. Tokens are derived from the records by serializing them into entity
descriptions (see Section 3) and splitting the entity descriptions by whitespace.

Table 1: Statistics of the benchmark tasks.

Dataset Dataset Pos. Neg. Pos. Neg. Pos. Neg. Vocab. Cartesian
Benchmark A B Train Train Val. Val. Test Test Size Product

WDC-Blocksmall 5.0k 5.0k 6.5k 10.5k 3.2k 5.3k 0.5k 4.0k 67k 2.5 · 107
WDC-Blockmedium 5.0k 0.2M 6.5k 10.5k 3.2k 5.3k 0.5k 4.0k 1.2M 1.0 · 109
WDC-Blocklarge 0.1M 2.0M 6.5k 10.5k 3.2k 5.3k 0.5k 4.0k 6.9M 2.0 · 1011

Abt-Buy 1.1k 1.1k 0.6k 5.1k 0.2k 1.7k 0.2k 1.7k 7.9k 1.2 · 106
Amazon-Google 1.4k 3.3k 0.7k 6.2k 0.2k 2.1k 0.2k 2.1k 7.4k 4.5 · 106
Walmart-Amazon 2.6k 22.1k 0.6k 5.6k 0.2k 0.9k 0.2k 0.9k 49.2k 5.6 · 106
DM2M 2.0M - - - - - 1.7M - 3.8M 2.0 · 1012
BTC12-Infoboxes 1.6M 8.9M - - - - 1.5M - 4.9M 1.5 · 1013

Comparison to other blocking benchmarks. Similar to WDC-Block, the
Abt-Buy (A-B), Amazon-Google (A-G) and Walmart-Amazon (W-A)9 bench-
marks, which are widely used in the related work [31, 33, 37, 43, 44, 49], cover
e-commerce use cases. The statistics in Table 1 show that these benchmarks
have much smaller Cartesian products A × B and vocabulary sizes compared
to WDC-Block. Each of these benchmarks only requires blocking data from two
e-shops while WDC-Block contains data from 3,259 sources. The DM2M bench-
mark [37] offers a large Cartesian product but consists of synthetic data. The
benchmark is thus biased by its data generation process. Similar to WDC-Block,
the blocking benchmarks introduced in [17] are based on data from the Semantic
Web. The largest benchmark from this paper, BTC12-Infoboxes, requires block-
ing data from the Billion Triples Challenge 2012 dataset which has been crawled
from the LOD Cloud and infobox data from DBpedia [17]. Although the dataset
BTC12-Infoboxes is larger than WDC-Block, the matches in BTC12-Infoboxes
all involve entities that appear in Wikipedia. In contrast, WDC-Block contains
data from a different topical domain: e-commerce data from many e-shops. In
addition, the e-commerce data in WDC-Block is more recent than the Wikipedia
data in BTC12-Infoboxes (2022 versus 2012).

9 https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

SC-Block 5

3 SC-Block: Supervised Contrastive Blocking

There are unsupervised [16, 42], self-supervised [34, 49, 51, 53], and supervised
blocking methods [4, 18, 39]. The supervised methods use a training set contain-
ing matching and non-matching record pairs. Most state-of-the-art matching
methods require training sets, which are assembled by many entity resolution
projects. The motivation behind supervised blocking is to use the available train-
ing data not only for matching but also for blocking. In the context of the Seman-
tic Web, the necessary training data can be derived from schema.org annotations
that contain identifiers like GTINs, MPNs or ISBNs. SC-Block utilizes super-
vised contrastive learning to position record embeddings likely describing the
same real-world entity close to each other in an embedding space. Figure 1 gives
an overview of SC-Block while the different steps of the method are described
below.

Fig. 1: Overview of the SC-Block method

(1) Record Serialization. Following recent works [31, 49, 51], records in datasets
A and B are serialized into textual entity descriptions. Each attribute of a record
is serialized as follows, ”[Col] attribute name [Val] actual attribute value”. For
the entity descriptions, all attribute serializations are concatenated. In the ap-
pendix, we evaluate the impact of adding the attribute names to the serialization.

(2) Training Data Preparation. This section explains how the training data
is prepared for supervised contrastive learning and how source-aware sampling is
used to reduce inter-label noise. The supervised contrastive loss requires records
to share the same label if they describe the same real-world entity. The bench-
mark datasets provide pairs of records instead of clusters of matching records
that share the same label. To identify records that refer to the same real-world
entity, a correspondence graph is constructed, following the approach of Peeters
and Bizer [44]. The records serve as vertices in the graph, and an edge between
two vertices indicates a match between the corresponding records. A unique la-
bel is assigned to each connected component in the graph, ensuring that records
describing the same real-world entity receive the same label. The labelling pro-
cedure may introduce inter-label noise as only a subset of all matches is known.
Consequently, some matching records may not share the same label. During

6 A. Brinkmann et al.

training, these matching records are treated as non-matches and are not em-
bedded in a nearby location in the embedding space. This inter-label noise re-
duces the effectiveness of the embedding [12]. We apply source-aware sampling
to reduce inter-label noise [44]. To achieve source-aware sampling, we create two
training sets: A and B. Training set A contains all records from dataset A and the
records from dataset B that share a label with a record from dataset A. Training
set B contains all records from dataset B and the records from dataset A that
share a unique label with a record from dataset B. During training, batches of
offers are sampled from either training dataset A or B. This sampling strategy
reduces the noise resulting from missing matches [44].

(3) Training with Supervised Contrastive Loss. In this section, we in-
troduce the supervised contrastive loss and how it is applied to train effective
embeddings to cluster matching records in an embedding space. The training pro-
cedure starts with a batch of N entity descriptions sampled from the prepared
training data as discussed in Section 3. We duplicate all records so that for each
record there is at least one matching record in the batch. An encoder network
Enc(·) maps each entity description t to an embedding, z = Enc(t) ∈ RD. In our
experiments, Enc(·) is a pre-trained RoBERTa-base model [32] with D = 768.
The record embedding z is mean pooled and normalized using the L2 normal-
ization. During training, we apply the supervised contrastive loss to update the
parameters of the RoBERTa model. The supervised contrastive loss exploits la-
bel information of matching records by maximizing the agreement of records
with the same label (Positives) and minimizing the agreement of records from
different labels (Negatives) to train effective embeddings for SC-Block. Formally,
supervised contrastive loss is defined as follows [29]: Given a batch of 2N em-
bedded records z = Enc(t) ∈ RD:

L =
∑
i∈I

Li =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/T)∑

a∈A(i) exp(zi · za/T)
(1)

Here, i ∈ I ≡ 1...N is the index of an embedded record z. The index i is called
an anchor embedding zi, P (i) ≡ {p ∈ A(i) : yp = yi} is the set of indices
of all records with the same label in the batch distinct from i, and |P (i)| is
its cardinality. Also recall that the dot (·) symbol denotes the inner product,
A(i) ≡ I\i, and T ∈ R+ is a scalar temperature parameter. Within a batch,
each embedding becomes an anchor embedding zi that is pulled close to all
record embeddings from the same unique label while it is pushed away from all
record embeddings with different labels. By setting the batch size to 1024 we
ensure that each embedding is compared to many other embeddings, which is
beneficial for the supervised contrastive loss [29]. Additionally, in each training
epoch, different records are sampled into a batch leading to a variation in the
record comparison during training. The large number of comparisons and the
variation of the batches enable supervised contrastive training to learn better
embeddings than pair-wise training which only uses the record pairs from the
training set. In our experiments, T is set to 0.07 and the encoder network is

SC-Block 7

trained for 20 epochs with a learning rate of 5e− 5. After training the encoder
network embeds the entity descriptions from the input datasets A and B.

(4) Nearest-Neighbour Search for Blocking. SC-Block uses nearest neigh-
bour search to create blocks of similar records, which is a common approach for
blocking [49, 51, 53]. The nearest neighbour search exploits that similar records
are close in the embedding space due to supervised contrastive training. For the
search, we define dataset A, which contains fewer records than dataset B, to
serve as the query table QA and dataset B to serve as an index table IB . In the
appendix, we evaluate the impact of switching the query and the index table. We
index the embeddings zB of IB using FAISS [26] to allow an efficient search. For
each query record zA ∈ QA, the search ranks candidate records zB ∈ IB based
on their cosine similarity with the query record zA ∈ QA. A hyperparameter k
determines how many nearest neighbours are retrieved for each query record. A
record rA ∈ A and its k corresponding neighbouring records r1, r2 . . . , rk, ri ∈ B
build the set of pairs (rA, r1), (zA, r2) . . . (rA, rk) and are added to the candidate
set C. For the nearest neighbour search, FAISS performs a merge-sort on IB ,
which has a time complexity of O(n log2 n) [26].

4 Blocking-only Evaluation

This section evaluates the candidate sets generated by SC-Block concerning re-
call and candidate set size and compares them to the sets generated by seven
other blocking methods from related work. The evaluation of SC-Block’s candi-
date sets is conducted in two scenarios: (1) with a fixed value of k=5 to draw
general conclusions about the recall and precision of the candidate sets, and (2)
with k tuned to minimize the number of missed matching pairs while keeping
the candidate set size as small as possible.

4.1 Baseline Blocking Methods

This section describes the blocking methods from related work that we compare
to SC-Block. Further details on the baseline blocker configurations are available
online10. Table 2 provides an overview of the methods based on the criteria
blocking technique, training procedure, supervision, and encoder network. If a
criterion is not applicable, it is marked with a ‘-’.

JedAI. The JedAI framework implements symbolic techniques for entity res-
olution pipelines. For our experiments, we run the default configuration of the
block building, block cleaning & filling steps of the linked tutorial11 [16].

BM25. BM25 is an unsupervised blocker [42] that uses a vector space model [48]
and the BM25 term weighting scheme [47] to compute a similarity score for

10 https://webdatacommons.org/largescaleproductcorpus/wdc-block/
11 https://github.com/AI-team-UoA/pyJedAI/blob/main/docs/tutorials/

CleanCleanER.ipynb

8 A. Brinkmann et al.

Table 2: Blocking techniques.

Learning Blocking technique Training Encoder

JedAI [38] unsupervised key-based blocking - -
BM25 [42] unsupervised nearest-neighbour search - -
Auto [49] self-supervised nearest-neighbour search autoencoder fasttext
CTT [49] self-supervised nearest-neighbour search pair-wise fasttext
BT [51] self-supervised nearest-neighbour search contrastive RoBERTa
SimCLR [51] self-supervised nearest-neighbour search contrastive RoBERTa
SBERT [46] supervised nearest-neighbour search pair-wise RoBERTa
SC-Block supervised nearest-neighbour search contrastive RoBERTa

the nearest neighbour search. BM25 is evaluated using whitespace tokenization
(referred to as BM25) and tri-grams (referred to as BM253).

Autoencoder (Auto) and Cross Tuple Training (CTT). Auto and CTT
use fasttext to embed the tokens of the entity descriptions and average the token
embeddings to obtain a record embedding [49]. For Auto, the record embeddings
are sent through an autoencoder. Auto is self-supervised and thus requires no la-
belled training data. For CTT, the record embeddings are sent through a Siamese
summarizer and a classifier learns to detect matches based on the element-wise
difference of the created embeddings. CTT is trained on synthetically produced
training data derived from the two blocked datasets.

Barlow Twins (BT) and SimCLR. BT and SimCLR, two self-supervised
blockers, duplicate and augment entity descriptions in training batches by drop-
ping random tokens [51]. The entity descriptions are embedded using a RoBERTa
model to be comparable to SC-Block. During training, BT aligns the cross-
correlation of augmented and original entity descriptions with the identity ma-
trix [52], while SimCLR aims to maximize the similarity between embeddings of
the same records and minimize it for different records within a batch [8].

Sentence-Bert (SBERT) SBERT requires labelled pairs of matching and non-
matching records for training [46]. The entity descriptions of a labelled pair
are embedded using a pre-trained RoBERTa language model to ensure that
the encoder network of SBERT and SC-Block is the same. During training,
the cosine similarity of both embeddings is calculated, and the weights of the
language model are updated using mean-squared error loss.

4.2 Implementation

We used a shared server with 96 × 3.6 GHz CPU cores, 1024 GB RAM and
an NVIDIA RTX A6000 GPU for the experiments. We use Elasticsearch12 to
implement BM25 and BM253. The Elasticsearch instance runs on a virtual ma-
chine with 4 × 2.1 GHz CPU cores, 32 GB RAM and 512 GB storage. If an

12 https://www.elastic.co/what-is/elasticsearch

SC-Block 9

execution exceeds 48 hours or if the shared server’s memory is insufficient, the
experiment is labelled as timed-out or as an out-of-memory error, respectively.

4.3 Results for Fixed k

We now analyze the candidate sets of the nearest neighbour blockers with a fixed
number of nearest neighbours k = 5. By fixing the hyperparameter k, differences
in recall and precision become visible that are not visible when k is tuned. k = 5
is chosen because it allows the blockers to score high recall, especially on the
datasets A-B, A-G and W-A, which exhibit a maximum number of matching
neighbours smaller than 5. At the same time, blockers miss matching pairs,
because k = 5 is not sufficiently large, making it possible to see differences. In
Section 4.4, we adjust the value of k to ensure that the candidate sets of the
nearest neighbour blockers exceed a threshold of 99.5% on the validation set,
to minimize the number of missed matches. Table 3 shows runtime, recall and
precision of the candidate sets generated by the nearest neighbour blockers. The
candidate sets are evaluated based on the record pairs of the respective test set.
The lowest runtime and the highest score per column are marked in bold.

Table 3: Runtime (RT) in seconds, recall (R) in %, and precision (P) in % of the
candidate sets generated by all nearest neighbour blockers with fixed k = 5

A-B A-G W-A WBsmall WBmedium WBlarge

RT R P RT R P RT R P RT R P RT R P RT R P

SC-Block 175 100 36 290 97 36 588 96 33 402 72 57 0.7k 66 64 18.1k 57 74
BM253 18 98 27 36 94 31 290 97 21 300 53 39 1.0k 47 44 172.8k timed-out
BM25 9 92 27 12 94 32 45 96 22 44 59 40 0.2k 54 45 4.1k 42 54
Auto 20 75 31 27 83 36 353 82 23 127 43 40 0.7k 36 41 out-of-memory
CTT 95 77 32 174 82 36 745 81 24 448 43 38 9.8k 35 41 out-of-memory
SimCLR 178 90 44 41 92 37 534 91 32 728 35 39 1.1k 21 39 11.4k 3 33
BT 185 95 29 266 90 34 210 93 25 838 32 35 1.2k 21 36 9.6k 13 33
SBERT 498 74 75 307 29 41 441 31 17 1.9k 45 49 1.5k 35 55 8.4k 24 57

On average, SC-Block has the highest recall and precision scores compared
to the other blockers. It is also evident that the recall of all generated candi-
date sets decreases from WBsmall to WBlarge, indicating that a larger vocabu-
lary and Cartesian product make the dataset more challenging. In the following
paragraphs, we compare the performance of SC-Block to the performance of the
other blockers.

Unsupervised blockers. On datasets A-B, A-G, and W-A, BM25 and BM253
exhibit similar performance to SC-Block. However, on WDC-Block, BM25 and
BM253 miss an average of 16.3% more pairs than SC-Block. This decrease in
performance can be attributed to the larger token vocabulary of WDC-Block,

10 A. Brinkmann et al.

which complicates the identification of matching pairs through token overlap by
both BM25 blockers.

Self-supervised blockers. Auto and CTT have the poorest performance
among dense nearest neighbour-based blockers in datasets A-B, A-G, and W-A.
This is due to the pre-trained fasttext embeddings used in Auto and CTT be-
ing less potent compared to the robust RoBERTa embeddings utilized in other
blockers. SimCLR and BT lose between 3% and 9% more pairs than SC-Block
on the datasets A-B, A-G and W-A with BT performing marginally better than
SimCLR. On the W-A dataset, the slight difference between SC-Block, Sim-
CLR, and BT can be attributed to the relatively low number of positive training
pairs available. When supervision is absent, the supervised contrastive loss al-
gorithm degrades to the loss of SimCLR [29]. On WDC-Block SimCLR and BT
miss on average 45% and 43% more pairs than SC-Block. SC-Block holds an
advantage as it leverages the guidance of matching and non-matching training
pairs present in the datasets. Auto and CTT outperform BT and SimCLR on
WDC-Block. During training, Auto and CTT require exposure to all tokens in
a dataset, which necessitates training on all records from the initial datasets.
However, BT and SimCLR are solely trained on the records mentioned in the
training and validation set. This difference in training accounts for the perfor-
mance gap and highlights the susceptibility of self-supervised blockers to unseen
out-of-distribution records. SC-Block uses the same records for training as BT
and SimCLR. However, its recall and precision scores demonstrate increased ro-
bustness against noise. The nearest neighbour search on WBlarge of Auto and
CTT results in an out-of-memory error, revealing a limitation of this implemen-
tation for large blocked datasets.

Supervised blockers. The supervised blocker SBERT performs poorly. This
indicates that SC-Block’s supervised contrastive loss utilizes supervision more
effectively than SBERT’s pair-wise cosine similarity loss.

4.4 Results for 99.5% Recall on Validation Set

This section analyses the impact of tuning the hyperparameter k of the nearest
neighbour blockers. Increasing k raises the likelihood of including all matches
in the candidate set. However, higher k values generate larger candidate sets,
which increase the runtime of the entity resolution pipeline since the matcher
must compare more candidate pairs. To analyse how the blockers handle this
trade-off, we evaluate each nearest neighbour blocker with increasing values of
k, starting from k = 1. Once the recall of the candidate set exceeds 99.5% on the
validation set, k is fixed and the recall is evaluated on the test sets. To limit the
search space, we cap k at a maximum of 50 on A-B, A-G, W-A and WBsmall,
100 on WBmedium and 200 on WBlarge. Table 4 presents the values of k, the
runtime, the recall achieved on the test set, and the size of the candidate sets.
The highest recall and lowest k, runtime and candidate set size per dataset are
highlighted.

SC-Block 11

Table 4: k, runtime (RT) in seconds, recall (R) in % and candidate set size (|C|)
of the candidate sets on A-B, A-G and W-A. k is tuned on the validation set.

A-B A-G W-A
k RT R |C| k RT R |C| k RT R |C|

SC-Block 5 175 100 5k 8 293 100 11k 12 558 97 31k
BM253 13 18 100 14k 27 43 100 37k 12 290 99 31k
BM25 7 9 95 8k 29 15 99 40k 21 45 99 54k
JedAI - 9 97 13k - 19 98 20k - 340 99 172k
Auto 50 20 97 54k 50 27 95 68k 50 353 93 128k
CTT 50 95 97 54k 50 174 95 68k 50 745 92 128k
BT 20 182 99 22k 30 49 98 41k 26 545 99 66k

SimCLR 29 186 96 31k 30 276 98 41k 23 221 96 59k
SBERT 26 502 86 28k 30 314 51 41k 50 441 49 128k

WBsmall WBmedium WBlarge

k RT R |C| k RT R |C| k RT R |C|

SC-Block 14 406 94 70k 20 426 92 100k 50 8.9k 90 5M
BM253 50 679 94 250k 100 779 94 500k 200 173.0k timed-out
BM25 50 86 97 250k 100 186 98 500k 200 14.2k 96 20M
JedAI - 50 55 51k - 1.6k 81 561k - 173k timed-out
Auto 50 127 85 250k 100 450 80 500k out-of-memory
CTT 50 448 85 250k 100 672 80 500k out-of-memory
BT 50 770 67 250k 100 870 43 500k 200 10.7k 34 20M

SimCLR 50 923 70 250k 100 1.0k 46 500k 200 12.9k 36 20M
SBERT 50 1567 59 250k 100 2.1k 78 500k 200 13.5k 59 20M

Overall, the candidate sets of the blockers differ mainly in size, while most
of the nearest neighbour search blocking techniques have a recall close to 1.
SC-Block creates relatively small candidate sets. The candidate sets are now
compared in detail.

Unsupervised Blockers. The BM25 weighting schema is insufficient to achieve
competitive candidate set sizes on the WDC-Block benchmark, as evident from
the large candidate sets of unsupervised blockers. This is due to the considerable
number of corner cases in the validation sets and the vast vocabulary of the
datasets. SC-Block is fine-tuned and can exploit matching information from the
training set to acquire knowledge about the corner cases. JedAi’s pruning of
blocks negatively affects the recall score on WBsmall and WBmedium and causes
a timeout on WBlarge.

Self-supervised Blockers. The self-supervised blockers BT and SimCLR re-
quire two to six times higher values of k than SC-Block to produce candidate
sets that meet the recall threshold of 99.5% on the validation set. Auto and
CTT fail to meet the recall threshold for any of the datasets. On the WDC-
Block benchmark, Auto and CTT again outperform BT and SimCLR on the
datasets WBsmall and WBmedium by finding on average 25% more pairs. The

12 A. Brinkmann et al.

out-of-memory error on WBlarge arises from the nearest neighbour search im-
plementation of Auto and CTT.

Supervised Blockers. SBERT overfits the training and validation data because
it reaches a high recall score on the validation set but reaches a much lower
recall on the test set. SC-Block’s supervised contrastive loss better utilizes the
training data than SBERT’s mean-squared error loss on the cosine similarity of
the training pairs.

The best-performing blockers SC-Block, BM253 and BT produce candidate
sets with a recall close to 1, yet vary in their sizes. In Section 5, we combine
these blockers with different matchers and measure the impact of the blockers
on the F1 score and runtime of the entire entity resolution pipeline.

5 Evaluation within Entity Resolution Pipelines

To evaluate the impact of the SC-Block, BM253, and BT blockers on entity
resolution pipelines, we assess (1) the F1 score and runtime of the pipelines with
these blockers and (2) whether the reduced runtime of the pipeline with SC-Block
compensates for the training time of the blocker. The candidate sets, generated
by the blockers, are processed by the matchers Magellan [30], RoBERTa Cross
Encoder (CE) [6], Ditto [31], and SupCon-Match [44] to produce final sets of
matching pairs. Each blocker uses the tuned k from Section 4.4. The matchers
are fine-tuned on the same training sets as the blockers.

5.1 F1 Score and Runtime

This section analyses the impact of SC-Block, BM253, and BT on the F1 score
and runtime of entity resolution pipelines. The runtime refers to the execution
time of blocking and matching, excluding training times, which is discussed in
Section 5.2. Table 5 shows the F1 score and the runtime in seconds, with the
highest F1 score and lowest runtime highlighted.

F1 score. Table 5 shows that the F1 scores of the pipeline depend on the matcher
for candidate sets with high recall. Pipelines with BT on WDC-Block are an
exception because of the low recall of the respective candidate set, which harms
the F1 scores as known from Section 4.4. On WDC-Block, pipelines consisting
of SC-Block and Ditto or CE yield better results than pipelines with SC-Block
and SupCon. This is because Ditto and CE learn distinctive patterns that are
not acquired by SC-Block and SupCon. By combining SC-Block with Ditto or
CE, these varied patterns are effectively exploited.

Runtime. In general, it can be concluded that using an effective blocker such
as SC-Block can reduce the runtime of a pipeline. When comparing SC-Block
to BM253 and BT, we can observe that the smaller candidate sets of SC-Block
result in pipelines that run 4 to 7 times faster. For example, the runtime of the
pipeline consisting of BT and CE on the WBlarge dataset is 30 hours, whereas
SC-Block reduces the workload of the CE matcher and reduces the pipeline

SC-Block 13

Table 5: F1 score in % and runtime in seconds (RT) of state-of-the-art entity
resolution pipelines

A-B A-G W-A WBsmall WBmedium WBlarge

Blocker Matcher F1 RT F1 RT F1 RT F1 RT F1 RT F1 RT

SC-Block SupCon 93 71 80 133 81 355 71 383 72 742 72 30.7k
Ditto 91 185 76 336 86 754 77 918 78 1.5k 78 66.5k
CE 80 57 64 101 86 303 77 351 77 606 76 27.9k
Magellan 52 335 58 511 68 1.5k 59 2.1k 61 2198 61 46.2k

BM253 SupCon 93 88 80 467 82 490 69 2.0k 70 4.2k timed-out
Ditto 90 228 76 941 86 1.0k 74 3.6k 75 7.9k timed-out
CE 79 70 64 353 85 437 73 1.8k 74 4k timed-out
Magellan 51 216 58 555 67 1.9k 44 2.4k 43 3.7k timed-out

BT SupCon 93 125 80 157 81 548 58 1.5k 45 2.9k 40 119.6k
Ditto 90 296 75 442 86 1.0k 64 3.0k 50 6.3k 44 246.1k
CE 79 75 64 93 85 188 63 1.4k 49 2.6k 43 109.8k
Magellan 51 212 57 346 66 1.2k 42 2.4k 36 2.7k 32 72.1k

runtime to 8 hours. On the WBlarge, BM253 requires a significant amount of
time to generate large candidate sets, leading to pipeline timeouts after a two-day
runtime. However, on datasets A-B, A-G, and W-A, using the smaller candidate
sets of SC-Block results in pipelines that finish 1.5 to 2 times faster compared
to pipelines with BM253 and BT. To see if training SC-Block is reasonable, we
set the reduction in runtime into context with the training time in Section 5.2.

5.2 Impact of Training Time

If online training of a blocker is necessary, it is only reasonable to do so if the
runtime of the pipeline, including training time, is shorter than the runtime of
a pipeline with a blocker that does not require further training. Therefore, we
consider the training time of the SC-Block and BT blockers in relation to the
overall runtime of the entity resolution pipelines. Table 6 displays the blocker
training time (BTT) and the complete runtimes (CT), which include the blocker
training time, blocking time, and matching time of all pipelines.

Small Benchmark Datasets. For the small datasets A-B, A-G and W-A, the
unsupervised BM253 blocker is as efficient as the supervised and self-supervised
blocking methods. Although SC-Block and BT show a small improvement in
runtime on A-B, A-G, and W-A, their advantage is counterpoised by the training
time of the blockers. Training SC-Block for these small datasets is not practical
since entity resolution pipelines with the unsupervised BM253 blocker and a
tuned k value generate recall scores near 1, equivalent F1 scores, require no time
for training and runtime is faster than SC-Block’s runtime and training time.

WDC-Block. The runtime of pipelines using BM253 on WDC-Block increases
with a larger vocabulary and a larger cartesian product of candidate pairs. In

14 A. Brinkmann et al.

Table 6: Blocker Training Time (BTT) and complete runtime of entity resolution
pipelines (CT) in seconds

A-B A-G W-A WBsmall WBmedium WBlarge

Blocker Matcher BTT CT BTT CT BTT CT BTT CT BTT RT BTT RT

SC-Block SupCon 227 298 259 392 430 0.8k 343 0.7k 343 1.1k 343 31.0k
Ditto 227 412 259 595 430 1.2k 343 1.3k 343 1.8k 343 66.9k
CE 227 284 259 360 430 0.7k 343 0.7k 343 0.9k 343 28.2k
Magellan 227 562 259 770 430 1.9k 343 2.4k 343 2.5k 343 46.6k

BM253 SupCon - 88 - 467 - 0.5k - 1.9k - 4.2k timed-out
Ditto - 228 - 941 - 1.1k - 3.6k - 7.9k timed-out
CE - 70 - 353 - 0.4k - 1.8k - 4.0k timed-out
Magellan - 216 - 555 - 1.9k - 2.4k - 3.7k timed-out

BT SupCon 158 283 236 393 130 0.7k 779 2.3k 779 3.7k 779 120.4k
Ditto 158 454 236 678 130 1.1k 779 3.9k 779 7.1k 779 246.9k
CE 158 233 236 329 130 0.3k 779 2.2k 779 3.4k 779 110.6k
Magellan 158 370 236 582 130 1.3k 779 3.2k 779 3.5k 779 72.9k

this scenario, training SC-Block is a reasonable option since the training data
is available. The five minutes of training time reduce the pipeline’s runtime
compared to BM253 even on WBsmall by 20 minutes for the matchers SupCon
and CE. Due to our computational restrictions, it was only possible to run
competitive pipelines on WBlarge if SC-Block was applied for blocking.

6 Related Work

Entity resolution [11], also known as Link Discovery [35], is a crucial task in the
process of integrating data from the Web. The entity resolution pipelines consist
of two main steps: blocking and matching, which both have been studied for
decades [2, 11, 35, 36, 40].

Blocking. Blocking is traditionally tackled as an unsupervised task by gener-
ating a blocking key value from each record [1, 10, 50]. Records with the same
blocking key value are assigned to the same block. Instead of one blocking key
value, some works use multiple blocking keys [13, 14, 22], or multi-dimensional
blocking [3, 14, 24]. Meta-blocking, implemented in the JedAI toolkit [38], ex-
tends blocking by blocking key values with an additional pruning step that first
weights candidate record pairs by their matching likelihood and discards pairs
with the lowest scores [16]. This pruning step has also been implemented using
supervision [18, 39]. Other works add a clustering step to exploit the transitiv-
ity of candidate record pairs [3, 50]. The blocking key value has also been used
as a sorting key for sorted neighbourhood blockers [23, 27]. Related works also
utilized supervision [4, 53] or self-supervision [28] to learn a blocking strategy. Re-
cently, deep learning for blocking has become popular [25, 53]. DeepBlocker [49]
explored the use of deep self-supervised learning for blocking, introducing two

SC-Block 15

blockers based on auto-encoding (Auto) and cross-tuple training (CTT). Su-
dowoodo [51] applies self-supervised learning in combination with a transformer
model and the two loss functions SimCLR and Barlow Twins (BT). The super-
vised contrastive loss of SC-Block is an extension of the SimCLR loss [8, 29]. We
compare SC-Block to the blockers JedAI, Auto, CTT, SimCLR and BT from
the related work. Except for JedAI all benchmarked blockers apply the nearest
neighbour search for candidate set generation. Mugeni et al. use self-supervised
contrastive learning to position embeddings in the embeddings space and apply
an unsupervised community detection technique from graph structure mining
to block record pairs [34]. Sparkly has recently demonstrated that TF-IDF and
BM25 are strong baseline blockers [42].

Entity Matching. Most current entity matching methods rely on deep learn-
ing techniques [2]. This trend was initialized by Ebraheem et al. [15] and
Mudgal et al. [33]. Recently, several transformer-based matching methods have
achieved state-of-the-art performance [6, 20, 21, 31, 43]. Among them, Peeters
and Bizer [44] and Wang, Li and Wang [51] use contrastive learning, similar
to our work.

Contrastive Learning. SC-Block is inspired by ideas from computer vi-
sion [29], information retrieval [19], and entity matching [44] where contrastive
learning has shown to be more effective than the traditional cross-entropy-
based learning. Specifically, Gao, Yao and Chen [19] use contrastive learning
to learn sentence embeddings without any supervision. Supervised contrastive
learning still suffers from challenges, including the robustness of learned repre-
sentations [12] and class collapse, i.e., all samples from a cluster are mapped to
the same representation [7]. Similar to SupCon [44], SC-Block applies source-
aware sampling to increase the robustness of the learned embeddings. The main
difference to SupCon is that SC-Block’s embeddings are optimized for blocking
and not for matching, which requires a longer pre-training of the embeddings.

7 Conclusion

The paper introduced the WDC-Block blocking benchmark, which employs data
from a large number of Web data sources. The benchmark offers a large max-
imal Cartesian product and vocabulary size. The paper further proposes the
SC-Block blocking method, which employs supervised contrastive learning to po-
sition records in an embedding space. The evaluation of SC-Block using WDC-
Block and three smaller benchmark datasets showed that SC-Block generates
smaller candidate sets than other state-of-the-art blockers. When using SC-
Block together with the best-performing matcher on WDC-Block, the runtime
for pipelines decreased from 30 to 8 hours, performing 1.5 to 4 times faster than
pipelines utilizing other state-of-the-art blockers and the same matcher. The
reduced runtime overcompensates the time that is required to train SC-Block.

16 A. Brinkmann et al.

A Appendix - Additional Experiments

This appendix presents additional experiments that empirically justify several
low-level design decisions made for SC-Block. We evaluate (1) the impact of
another record serialization and (2) the impact of switching query and index
table. Furthermore, WDC-Block is available with three training set sizes. We
evaluate (3) how the different training set sizes impact SC-Block’s performance.

Serialization. The default serialization method adds the attribute name to en-
tity descriptions when serializing records. It is unclear whether the attribute
name affects how SC-Block places embeddings in the embedding space. In the
’No attribute name’ experiment, we only concatenate attribute values to derive
entity descriptions. A fixed value of k=5 is used in these experiments to observe
differences in precision and recall. We use a fixed k = 5 for these experiments to
see differences in precision and recall. The results in Table 7 show that for the
benchmark datasets A-B, A-G and W-A the serialization has only a marginal
impact on SC-Block’s recall and precision. On WDC-Block we see that the se-
rialization with attribute names achieves better recall and precision scores than
the serialization without attribute names. We can conclude that the attribute
names are not harmful and structure the entity descriptions, which makes the
entity descriptions better readable.

Table 7: Recall (R) in % and Precision (P) in % for different Record Serialization

Dataset A-B A-G W-A WBsmall WBmedium WBlarge

Serialization R P R P R P R P R P R P

Attribute Names 99 36 97 36 96 33 72 57 66 64 57 74
No attribute name 100 39 98 34 96 33 69 54 62 62 51 69

Switch Query Table and Index Table. By default, the table with fewer
records is selected as the query table and the larger table is selected as the
index table. In this study, we examine the effects of swapping the query and
index tables. The baseline for these experiments is the corresponding SC-Block
run with an optimized k from Section 4.4. The value of k for the experiments
involving switched tables is selected to ensure that the candidate sets have the
same size, denoted by |C|, as the candidate sets of the baseline experiment where
tables are not switched. If this is not possible, the smallest possible value of k
is chosen that generates a candidate set larger than the candidate set of the
baseline experiment where the query table and the index table are not switched.

The results in Table 8 show that for the benchmarks A-B, A-G, W-A and
WDsmall switching query and index table while keeping the candidate set size
stable results in a comparable recall. The advantage for A-G and W-A is that k
is much smaller, meaning fewer k values need to be tested during the hyperpa-
rameter search. On WBmedium and WBlarge table B is 20 to 40 times larger. If

SC-Block 17

Table 8: Recall (R) in %, Query Table (QT) Size and k for switching query and
index table

QT DS R QT Size k |C|

A A-B 99 1,081 5 5,405
B A-B 99.0 1,092 5 5,460

A A-G 99.6 1,363 8 10,904
B A-G 99.1 3,266 4 13,064

A W-A 96.9 2,554 12 30,648
B W-A 96.9 22,074 2 44,148

A WBsmall 93.5 5,000 14 70,000
B WBsmall 91.7 5,000 14 70,000

A WBmedium 91.9 5,000 20 100,000
B WBmedium 0.0 200,000 1 200,000

A WBlarge 89.5 100,000 50 5,000,000
B WBlarge 51.6 2,000,000 3 6,000,000

the query table and the index table are switched and k is chosen such that the
candidate set size is similar, the recall is much lower.

Different Training Set Sizes. WDC-Block is available with three training set
sizes. To analyze how the different training set sizes impact the performance of
SC-Block, we train SC-Block on the different training sets (SC-Blocksmall, SC-
Blockmedium and SC-Blocklarge) and search for k as described in Section 4.4. We
compared SC-Block to SimCLR, which was trained on records from the same
three training sets. Unlike SC-Block, SimCLR does not consider the information
about matching records in the training set. If only datasets without matching
information are available, SC-Block’s loss is equivalent to SimCLR’s loss.

Table 9: k and Recall (R) in % for different Training Set Sizes

Pos. Neg. WDC-Bsmall WDC-Bmedium WDC-Blarge

Dev. Dev. k R |C| k R |C| k R |C|

SC-Blocklarge 9,680 15,752 14 93.5 70k 20 91.9 100k 50 89.5 5M
SC-Blockmedium 2,338 2,819 50 92.6 250k 100 86.6 500k 200 77.8 20M
SC-Blocksmall 399 611 50 71.8 250k 100 52.0 500k 200 42.2 20M
SimCLR 0 0 50 69.5 250k 100 46.0 500k 200 36.1 20M

The results in Table 9 demonstrate that more training data improves recall
and decreases the candidate set size of SC-Block. Furthermore, the small training
set alone is adequate to enhance the results beyond those of the SimCLR baseline.
These findings confirm the usefulness of training data for SC-Block.

18 A. Brinkmann et al.

References

1. Aizawa, A., Oyama, K.: A Fast Linkage Detection Scheme for Multi-
Source Information Integration. In: Proceedings of the Sixth IEEE Interna-
tional Conference on Data Mining. pp. 30–39. IEEE, Tokyo, Japan (2005).
https://doi.org/10.1109/WIRI.2005.2

2. Barlaug, N., Gulla, J.A.: Neural Networks for Entity Matching: A Survey.
ACM Transactions on Knowledge Discovery from Data 15(3), 1–37 (2021).
https://doi.org/10.1145/3442200

3. van Bezu, R., Borst, S., Rijkse, R., Verhagen, J., Vandic, D., Frasincar, F.:
Multi-component similarity method for web product duplicate detection. In:
Proceedings of the 30th Annual ACM Symposium on Applied Computing. pp.
761–768. Association for Computing Machinery, New York, NY, USA (2015).
https://doi.org/10.1145/2695664.2695818

4. Bilenko, M., Kamath, B., Mooney, R.J.: Adaptive Blocking: Learning to
Scale Up Record Linkage. In: Proceedings of the Sixth IEEE International
Conference on Data Mining. pp. 87–96. IEEE, Hong Kong, China (2006).
https://doi.org/10.1109/ICDM.2006.13

5. Brinkmann, A., Primpeli, A., Bizer, C.: The Web Data Commons Schema.org
Data Set Series. In: Companion Proceedings of the ACM Web Conference 2023.
pp. 136–139. Association for Computing Machinery, New York, NY, USA (2023).
https://doi.org/10.1145/3543873.3587331

6. Brunner, U., Stockinger, K.: Entity matching with transformer architectures - a
step forward in data integration. In: Proceedings of the 23rd International Con-
ference on Extending Database Technology. pp. 463–473. OpenProceedings.org,
Copenhagen, Denmark (2020). https://doi.org/10.5441/002/edbt.2020.58

7. Chen, M., Fu, D.Y., Narayan, A., Zhang, M., Song, Z., Fatahalian, K., et al.:
Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive
Learning. In: Proceedings of the 39th International Conference on Machine Learn-
ing. vol. 162, pp. 3090–3122. PMLR, Baltimore, Maryland, USA (2022)

8. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A Simple Framework for Con-
trastive Learning of Visual Representations. In: Proceedings of the 37th Interna-
tional Conference on Machine Learning. vol. 119, pp. 1597–1607. PMLR, Virtual
(2020)

9. Christen, P.: Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer, Berlin, Heidelberg, 1st edn. (2012)

10. Christen, P.: A Survey of Indexing Techniques for Scalable Record Linkage and
Deduplication. IEEE Transactions on Knowledge and Data Engineering 24(9),
1537–1555 (2012). https://doi.org/10.1109/TKDE.2011.127

11. Christophides, V., Efthymiou, V., Palpanas, T., Papadakis, G., Stefanidis, K.: An
Overview of End-to-End Entity Resolution for Big Data. ACM Computing Surveys
53(6), 1–42 (2021). https://doi.org/10.1145/3418896

12. Chuang, C.Y., Robinson, J., Lin, Y.C., Torralba, A., Jegelka, S.: Debiased Con-
trastive Learning. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin,
H. (eds.) Proceedings of the 33rd Annual Conference on Neural Information Pro-
cessing Systems. vol. 33, pp. 8765–8775. Curran Associates, Inc., Virtual (2020)

13. van Dam, I., van Ginkel, G., Kuipers, W., Nijenhuis, N., Vandic, D., Frasincar,
F.: Duplicate detection in web shops using LSH to reduce the number of computa-
tions. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing.
pp. 772–779. Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2851613.2851861

SC-Block 19

14. De Assis Costa, G., Parente De Oliveira, J.M.: A Blocking Scheme for Entity
Resolution in the Semantic Web. In: Proceedings of the 30th International Con-
ference on Advanced Information Networking and Applications. pp. 1138–1145.
IEEE, Crans-Montana (2016). https://doi.org/10.1109/AINA.2016.23

15. Ebraheem, M., Thirumuruganathan, S., Joty, S., Ouzzani, M., Tang, N.: Dis-
tributed representations of tuples for entity resolution. Proceedings of the VLDB
Endowment 11(11), 1454–1467 (2018). https://doi.org/10.14778/3236187.3236198

16. Efthymiou, V., Papadakis, G., Papastefanatos, G., Stefanidis, K., Palpanas, T.:
Parallel meta-blocking for scaling entity resolution over big heterogeneous data.
Information Systems 65, 137–157 (2017). https://doi.org/10.1016/j.is.2016.12.001

17. Efthymiou, V., Stefanidis, K., Christophides, V.: Benchmarking Blocking Algo-
rithms for Web Entities. IEEE Transactions on Big Data 6(2), 382–395 (2020).
https://doi.org/10.1109/TBDATA.2016.2576463

18. Gagliardelli, L., Papadakis, G., Simonini, G., Bergamaschi, S., Palpanas, T.: Gen-
eralized supervised meta-blocking. Proceedings of the VLDB Endowment 15(9),
1902–1910 (2022). https://doi.org/10.14778/3538598.3538611

19. Gao, T., Yao, X., Chen, D.: SimCSE: Simple Contrastive Learning of Sentence Em-
beddings. In: Moens, M.F., Huang, X., Specia, L., Yih, S.W.t. (eds.) Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing. pp.
6894–6910. Association for Computational Linguistics, Virtual and Punta Cana,
Dominican Republic (2021). https://doi.org/10.18653/v1/2021.emnlp-main.552

20. Genossar, B., Gal, A., Shraga, R.: The Battleship Approach to the Low Resource
Entity Matching Problem. Proceedings of the ACM on Management of Data 1(4),
1–25 (2023). https://doi.org/10.1145/3626711

21. Genossar, B., Shraga, R., Gal, A.: FlexER: Flexible Entity Resolution for Multi-
ple Intents. Proceedings of the ACM on Management of Data 1(1), 1–27 (2023).
https://doi.org/10.1145/3588722

22. Hartveld, A., Van Keulen, M., Mathol, D., Van Noort, T., Plaatsman, T., Frasin-
car, F., et al.: An LSH-Based Model-Words-Driven Product Duplicate Detection
Method. In: Krogstie, J., Reijers, H.A. (eds.) Proceedings of the 30th International
Conference on Advanced Information Systems Engineering. vol. 10816, pp. 409–
423. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-
3-319-91563-0 25

23. Hernández, M.A., Stolfo, S.J.: The merge/purge problem for large databases. ACM
SIGMOD Record 24(2), 127–138 (1995). https://doi.org/10.1145/568271.223807

24. Isele, R., Jentzsch, A., Bizer, C.: Efficient Multidimensional Blocking for Link
Discovery without losing Recall. In: Marian, A., Vassalos, V. (eds.) Proceedings of
the 14th International Workshop on the Web and Databases. pp. 1–6. Association
for Computing Machinery, New York, NY, USA (2011)

25. Javdani, D., Rahmani, H., Allahgholi, M., Karimkhani, F.: DeepBlock: A Novel
Blocking Approach for Entity Resolution using Deep Learning. In: Proceedings of
the 5th International Conference on Web Research. pp. 41–44. IEEE, Tehran, Iran
(2019). https://doi.org/10.1109/ICWR.2019.8765267

26. Johnson, J., Douze, M., Jégou, H.: Billion-Scale Similarity Search
with GPUs. IEEE Transactions on Big Data 7(3), 535–547 (2021).
https://doi.org/10.1109/TBDATA.2019.2921572

27. Kejriwal, M., Miranker, D.P.: Sorted Neighborhood for Schema-Free RDF Data.
In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann,
A. (eds.) The Semantic Web: ESWC 2015 Satellite Events. vol. 9341, pp. 217–229.
Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-
319-25639-9 38

20 A. Brinkmann et al.

28. Kejriwal, M., Miranker, D.P.: An unsupervised instance matcher for
schema-free RDF data. Journal of Web Semantics 35(2), 102–123 (2015).
https://doi.org/10.1016/j.websem.2015.07.002

29. Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., et al.: Supervised
Contrastive Learning. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F.,
Lin, H. (eds.) Proceedings of the 33rd Annual Conference on Neural Information
Processing Systems. vol. 33, pp. 18661–18673. Curran Associates, Inc. (2020)

30. Konda, P., Das, S., C., P.S.G., Doan, A., Ardalan, A., Ballard, J.R., et al.:
Magellan: toward building entity matching management systems over data sci-
ence stacks. Proceedings of the VLDB Endowment 9(13), 1581–1584 (2016).
https://doi.org/10.14778/3007263.3007314

31. Li, Y., Li, J., Suhara, Y., Doan, A., Tan, W.C.: Deep entity matching with pre-
trained language models. Proceedings of the VLDB Endowment 14(1), 50–60
(2020). https://doi.org/10.14778/3421424.3421431

32. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., et al.: RoBERTa: A
Robustly Optimized BERT Pretraining Approach (2019), arXiv:1907.11692 [cs]

33. Mudgal, S., Li, H., Rekatsinas, T., Doan, A., Park, Y., Krishnan, G., et al.:
Deep Learning for Entity Matching: A Design Space Exploration. In: Pro-
ceedings of the 2018 International Conference on Management of Data. pp.
19–34. Association for Computing Machinery, New York, NY, USA (2018).
https://doi.org/10.1145/3183713.3196926

34. Mugeni, J.B., Amagasa, T.: A Graph-Based Blocking Approach for Entity Match-
ing Using Contrastively Learned Embeddings. ACM SIGAPP Applied Computing
Review 22(4), 37–46 (2023). https://doi.org/10.1145/3584014.3584017

35. Nentwig, M., Hartung, M., Ngonga Ngomo, A.C., Rahm, E.: A survey of
current Link Discovery frameworks. Semantic Web 8(3), 419–436 (2016).
https://doi.org/10.3233/SW-150210

36. Ngomo, A.C.N., Auer, S.: LIMES: a time-efficient approach for large-scale link
discovery on the web of data. In: Proceedings of the 22nd international joint con-
ference on Artificial Intelligence. vol. 3, pp. 2312–2317. AAAI Press, Barcelona,
Catalonia, Spain (2011)

37. Papadakis, G., Fisichella, M., Schoger, F., Mandilaras, G., Augsten, N., Nejdl,
W.: Benchmarking Filtering Techniques for Entity Resolution. In: Proceedings of
the IEEE 39th International Conference on Data Engineering. pp. 653–666. IEEE,
Anaheim, CA, USA (2023). https://doi.org/10.1109/ICDE55515.2023.00389

38. Papadakis, G., Mandilaras, G., Gagliardelli, L., Simonini, G., Thanos, E., Gian-
nakopoulos, G., et al.: Three-dimensional Entity Resolution with JedAI. Informa-
tion Systems 93, 101565 (2020). https://doi.org/10.1016/j.is.2020.101565

39. Papadakis, G., Papastefanatos, G., Koutrika, G.: Supervised meta-
blocking. Proceedings of the VLDB Endowment 7(14), 1929–1940 (2014).
https://doi.org/10.14778/2733085.2733098

40. Papadakis, G., Skoutas, D., Thanos, E., Palpanas, T.: Blocking and Filtering Tech-
niques for Entity Resolution: A Survey. ACM Computing Surveys 53(2), 1–42
(2020). https://doi.org/10.1145/3377455

41. Papadakis, G., Svirsky, J., Gal, A., Palpanas, T.: Comparative analysis of approx-
imate blocking techniques for entity resolution. Proceedings of the VLDB Endow-
ment 9(9), 684–695 (2016). https://doi.org/10.14778/2947618.2947624

42. Paulsen, D., Govind, Y., Doan, A.: Sparkly: A Simple yet Surprisingly Strong
TF/IDF Blocker for Entity Matching. Proceedings of the VLDB Endowment 16(6),
1507–1519 (2023). https://doi.org/10.14778/3583140.3583163

SC-Block 21

43. Peeters, R., Bizer, C.: Dual-objective fine-tuning of BERT for entity
matching. Proceedings of the VLDB Endowment 14(10), 1913–1921 (2021).
https://doi.org/10.14778/3467861.3467878

44. Peeters, R., Bizer, C.: Supervised Contrastive Learning for Product Match-
ing. In: Companion Proceedings of the Web Conference 2022. pp. 248–
251. Association for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3487553.3524254

45. Peeters, R., Der, R.C., Bizer, C.: WDC Products: A Multi-Dimensional Entity
Matching Benchmark. In: Proceedings of the 27th International Conference on Ex-
tending Database Technology. vol. 27, pp. 22–33. OpenProceedings.org, Konstanz
(2023). https://doi.org/10.48786/edbt.2024.03

46. Reimers, N., Gurevych, I.: Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing. pp.
3982–3992. Association for Computational Linguistics, Hong Kong, China (2019).
https://doi.org/10.18653/v1/D19-1410

47. Robertson, S., Zaragoza, H.: The Probabilistic Relevance Framework: BM25 and
Beyond. Foundations and Trends® in Information Retrieval 3(4), 333–389 (2009).
https://doi.org/10.1561/1500000019

48. Salton, G., Wong, A., Yang, C.S.: A vector space model for auto-
matic indexing. Communications of the ACM 18(11), 613–620 (1975).
https://doi.org/10.1145/361219.361220

49. Thirumuruganathan, S., Li, H., Tang, N., Ouzzani, M., Govind, Y., Paulsen, D.,
Fung, G., et al.: Deep learning for blocking in entity matching: a design space
exploration. Proceedings of the VLDB Endowment 14(11), 2459–2472 (2021).
https://doi.org/10.14778/3476249.3476294

50. Vandic, D., Frasincar, F., Kaymak, U., Riezebos, M.: Scalable entity resolu-
tion for Web product descriptions. Information Fusion 53, 103–111 (2020).
https://doi.org/10.1016/j.inffus.2019.06.002

51. Wang, R., Li, Y., Wang, J.: Sudowoodo: Contrastive Self-supervised Learning for
Multi-purpose Data Integration and Preparation. In: Proceedings of the IEEE 39th
International Conference on Data Engineering. pp. 1502–1515. IEEE, Anaheim,
CA, USA (2023). https://doi.org/10.1109/ICDE55515.2023.00391

52. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow Twins: Self-Supervised
Learning via Redundancy Reduction. In: Meila, M., Zhang, T. (eds.) Proceedings
of the 38th International Conference on Machine Learning. vol. 139, pp. 12310–
12320. PMLR, Virtual (2021)

53. Zhang, W., Wei, H., Sisman, B., Dong, X.L., Faloutsos, C., Page, D.: Auto-
Block: A Hands-off Blocking Framework for Entity Matching. In: Proceedings
of the 13th International Conference on Web Search and Data Mining. pp.
744–752. Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3336191.3371813

