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Abstract. Ontology engineering is a complex and time-consuming task,
even with the help of current modelling environments. Often the re-
sult is error-prone unless developed by experienced ontology engineers.
However, with the emergence of new tools, such as generative AI, in-
experienced modellers might receive assistance. This study investigates
the capability of Large Language Models (LLMs) to generate OWL on-
tologies directly from ontological requirements. Specifically, our research
question centres on the potential of LLMs in assisting human modellers,
by generating OWL modelling suggestions and alternatives. We experi-
ment with several state-of-the-art models. Our methodology incorporates
diverse prompting techniques like Chain of Thoughts (CoT), Graph of
Thoughts (GoT), and Decomposed Prompting, along with the Zero-shot
method. Results show that currently, GPT-4 is the only model capable of
providing suggestions of sufficient quality, and we also note the benefits
and drawbacks of the prompting techniques. Overall, we conclude that
it seems feasible to use advanced LLMs to generate OWL suggestions,
which are at least comparable to the quality of human novice modellers.
Our research is a pioneering contribution in this area, being the first to
systematically study the ability of LLMs to assist ontology engineers.
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1 Introduction

Ontologies are nowadays used in many applications, spanning almost all subjects
and industry domains, e.g., as schemas for Knowledge Graphs (KGs) [17] or as
stand-alone models for reasoning. However, despite the long history of ontology
engineering, including manual ontology engineering methodologies, modelling
environments, as well as attempts to automate the process, e.g., ontology learn-
ing, ontology engineering remains a time-consuming and error-prone activity.
Additionally, while being a research goal for several decades, there are still no
methods or tools that allow domain experts themselves to create high-quality
ontologies without the involvement of ontology engineers.

At the same time, Large Language Models (LLMs) are now exhibiting an
unprecedented level of natural language understanding and generation, and due
to their training data even able to produce formal output such as program code.
There are already tools emerging for assisting programmers in formalising their
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requirements into program code in various languages. Analogously, we would
like to investigate what contribution LLMs could make in the area of ontology
engineering, i.e., in assisting humans in translating their ontological requirements
into a formal ontology language, such as OWL. The objective is to pave the
way for tools that can aid domain experts and ontologists, by providing precise
suggestions during the ontology creation process. As concluded in [23] LLMs are
unlikely to replace neither ontologies nor ontology engineers completely, while
exploiting LLMs for more effective and efficient ontology engineering is essential.

In the process of ontology development, ontologists use ontology stories [30,6]
and Competency Questions (CQ) [14] to specify the capabilities and content of
the ontology to be developed. Ontology stories offer descriptive narratives en-
capsulating the requirements of a project, while specific capabilities to answer
queries can be expressed using CQs. Our investigation primarily centres on the
ability of LLMs to leverage these ontology stories, as well as the CQs derived
from them, for ontology creation. This sets our work apart from attempts to
merely translate some textual content into an ontology, since the input does not
explicitly state how to model something, but rather only specifies the desired
outcome. Further, due to the W3C standard OWL currently being the predom-
inant ontology representation language, we specifically target the generation of
OWL formalisations. OWL has several possible syntaxes, while we have chosen
to work with Turtle in this study due to its popularity, i.e., it is likely that LLMs
have encountered this syntax frequently in their training data.

Overall, this work addresses the following research questions: To what extent
can LLMs create an ontology that meets the requirements of an ontology story?
Which LLMs are suitable for this task, and what prompting techniques are most
effective? The main contributions of the work are: (1) Identifying which of the
current state-of-the-art LLMs are capable of producing sufficiently well-formed
OWL suggestions, (2) analysing the benefits and drawbacks of a range of prompt-
ing techniques, and (3) overall assessing the feasibility of LLMs to automatically
produce modelling suggestions. The remainder of the paper is organized as fol-
lows: In Sect. 2, we discuss related work. Then, in Sect. 3, we describe the
methodology and experiment setup, before presenting the results in Sect. 4, and
discussing implications of the results in Sect. 5. Finally, we conclude and dis-
cuss future work in Sect. 6. Supplementary material, including stories and CQs,
prompts, and the results, can be found on GitHub1.

2 Related Work

This section presents related work, in terms of ontology engineering methods, and
current tool support (Sect. 2.1), automated methods for generating OWL ontolo-
gies, i.e., ontology learning, including recent approaches using LLMs (Sect. 2.2),
and finally an overview of similar work in software engineering and code gener-
ation based on LLMs (Sect. 2.3).

1 https://github.com/LiUSemWeb/LLMs4OntologyDev-ESWC2024

https://github.com/LiUSemWeb/LLMs4OntologyDev-ESWC2024
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2.1 Ontology Engineering

Ontology engineering is traditionally a manual effort. Several methodologies ex-
ist, e.g. starting from early methodologies such as Methontology [12] and
NeOn [30]. More recently, agile methods [6,25,29] have become increasingly
popular, reflecting the needs of many real-world settings, and in [27] the LOT
methodology is presented as a compilation of experiences of many projects, as
well as methodologies and tools. While some methodologies have been proposed
in combination with explicit tool support, e.g., NeOn was originally proposed
together with the NeOn toolkit[30] and [27] propose a set of possible tools to use,
most activities are still entirely manual, such as listing of terms and relations,
formalisation into an ontology language etc. Commonly, tool support constitute
an ontology engineering environment, such as Protégé2 or TopBraid Composer3,
together with some visualisation, documentation and publishing tools. Devel-
opment environments guide the user in formalising the ontology by providing
common language constructs as user interface shortcuts, e.g., views, buttons,
wizards, etc. However, such tools still do not provide any concrete guidance on
how to formalise the domain, e.g., in OWL.

The notion of Ontology Design Patterns (ODP) was proposed [7,13], as a
way to encode modelling best practices and thus guide the ontology engineer.
Additionally, collections of best practices have been published4. Still, these tools
do not automatically connect to the requirements, e.g., expressed ontology stories
[6] or use cases [27] combined with CQs [14], but the ontology engineer must, on
their own, match their modelling problem to these best practices, which is not
straightforward. Thus, there is no methodology or tool currently that assists the
ontology engineer in the task of matching their specific requirements to modelling
best practices or suggesting potential solutions in an automated manner.

2.2 Ontology Learning and Generation

Generating ontologies automatically, e.g., from natural language text, has been
a topic of research for several decades, commonly denoted ontology learning. Ini-
tially, the field used classic NLP techniques such as POS-tagging in combination
with lexical patterns or frames, to detect occurrences of ontological constructs
in text. However, with methods such as [26], treating the task as one of machine
translation, deep learning has also made significant contributions to this field.
Additionally, early language models have been applied for various subtasks, such
as extending ontologies and mapping concepts to top-level ontologies [20].

Even more recently, LLMs have been shown to be effective in the Semantic
Web area owing to their capability to capture a vast array of information during
their training process. LLMs4OL [4] utilized LLMs for ontology learning, where

2 https://protege.stanford.edu/
3 https://allegrograph.com/topbraid-composer/
4 See for instance the vocabularies section of https://www.w3.org/TR/ld-bp/ or the

whitepaper at https://www.nist.gov/document/nist-ai-rfi-cubrcinc002pdf for
OBO ontologies

https://protege.stanford.edu/
https://allegrograph.com/topbraid-composer/
https://www.w3.org/TR/ld-bp/
https://www.nist.gov/document/nist-ai-rfi-cubrcinc002pdf
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LLMs were employed to extract relations among ontology classes or instances.
However, this approach was only able to extract relations among entities and did
not facilitate the complete generation of an ontology. This paradigm was then
used also for tasks like taxonomy discovery, and extraction of non-taxonomic
relations across diverse knowledge domains. In [11] a study is made on the per-
formance of LLMs on similarly specific tasks, e.g., NER and relation extraction,
but for the biomedical domain. Other preliminary work [21] has used fine-tuned
GPT models to translate restricted natural language sentences into DL axioms.
However, such specific statements do not represent realistic ontology require-
ments or scenarios, as targeted in our work. In addition, Text2KGBench [22]
and DiamondKG [1] analyzed the capability of LLMs in generating KGs from
text using predefined ontologies. Similarly, [9] extends KGs and ontologies, but
starting from an existing KG schema. Further, tools are appearing for supporting
the practical integration of OWL with deep learning, and LLMs, e.g., [15], but
such tools do not provide any guidance specifically for the ontology generation
task.

Furthermore, OLaLa [16] investigated the performance of LLMs on ontology
matching and showed promising results on this task. Turning, the task around,
another recent work has attempted to retrofit the ontology requirements, i.e.
CQs, from existing ontologies, using LLMs [2]. While this work is very inter-
esting, as it explores the connection between CQs and OWL formalisation, and
shows promising results of generating CQs even with simple prompts, it is not
treating the same kind of ontology generation task as our work. Overall, we
conclude that research on using LLMs for ontology learning and KG generation
in the Semantic Web indicates a promising direction. These approaches indicate
the potential of LLMs also for knowledge engineering, but none of the proposed
methods have so far treated the specific task targeted in this paper.

2.3 LLMs for Code Generation

Taking a broader perspective, generative AI has recently greatly influenced the
generation of code, including competitions like AlphaCode [19]. GitHub Copilot
is an example of AI-powered coding assistance [10], that has been shown to re-
duce coding time for simple tasks [33]. Code Llama [28], demonstrates the grow-
ing diversity in LLM applications for coding. Additionally, models like GPT-3.5
and GPT-4, and Bard contribute to this domain, being capable of also generating
code to some extent. These developments indicate a growing interest in lever-
aging generative AI for automating and enhancing coding, marking a paradigm
shift in software development. These approaches have inspired our work, but
targeting another kind of formalisation, they are not directly transferable to
ontologies.

3 Methodology

Our framework for generating ontologies from ontological requirements relies
on two components, an LLM and a prompting technique, which are described
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below. In addition, we describe the experiment setup and evaluation measures
used to compare the outcomes to a baseline of manually constructed ontologies.

3.1 Large Language Models

In our research, it was crucial to thoroughly examine various LLMs to achieve
generalisable results and avoid model-specific biases. Therefore, we use a rep-
resentative selection of models spanning proprietary and open-source versions:
GPT-3.5, GPT-4, and Bard from the closed-source spectrum, and Llama-7B,
Llama-13B, Llama2-70B [32], Alpaca [31], Falcon-7B [3], Falcon-7B-Instruct [24],
WizardLM [37], and Alpaca-LoRA [32]5 from the open source spectrum. We used
the Microsoft Azure API to access the GPT models, for Bard we used the web
interface, and open source models were run on T4 GPU and 12GB RAM. By
using this broad selection, we aimed to achieve a holistic understanding of the
LLM landscape. However, it is important to note that the purpose is not to com-
pare the effectiveness of the models but merely to determine if any of them can
produce sufficiently high-quality OWL models, and the characteristics of such
suggestions. Hence, we first performed initial experiments on a broad range of
models but then quickly settled for a smaller set in subsequent experiments.

3.2 Prompting Methods

In the field of LLMs, a prompt is an input that guides the model’s response
generation. A prompting technique entails the strategic formulation of these
prompts to maximize the efficacy of LLMs. It involves the deliberate structuring
and phrasing of prompts to align with the model’s training and capabilities.

In our research, we used multiple prompting techniques to test LLMs. Each
prompt in our experiments had four sections, and constitutes a template text
with variable sections where requirements are input (making them directly reusable
for new tasks, also in other domains). The header introduces the task, includ-
ing emphasising the need for a well-structured ontology that accurately captures
the information in a given narrative. The helper section, explains foundational
ontology concepts such as the correct usage of Turtle syntax for restrictions.
It may explain syntax, distinctions of classes, properties, and restrictions. The
subsequent story segment presents the ontology story, complete with its CQs,
i.e., the ontological requirements, acting as the primary source of content for
ontology creation. Finally, the footer anchors the prompt with cautionary ad-
vice, spotlighting common pitfalls and recurrent errors. These general mistakes
range from overlooking classes, returning empty output, to erroneous definitions
of attributes. The purpose of this layout is to present a clear roadmap for the
LLM. In addition, LLMs require a memory to handle a context larger than their
allowed context size. An external memory module can store information, such
as previously generated code and past communications. Zero-shot is the only

5 Details related to the versions and settings of these models can be found in our
supplementary material.
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prompting method that does not use a memory. The following details how these
prompt sections are implemented for each prompting technique.

Zero-shot Prompting: This method entails a one-time interaction with the
LLM, requiring no iteration or feedback loop, utilizing a prompt composed of
the four components outlined in the previous section: the header, helper, story,
and footer. Together the sections of the prompt provide all the information
needed for the ontology construction, in a single interaction.

Sub-task Decomposed Prompting - Waterfall approach (Waterfall) : This
method, adapted from [18], breaks down the ontology creation process into five
stages. The first stage involves self-guidance by the LLM, followed by the extrac-
tion of classes in stage two. The third stage involves constructing a taxonomy,
while the fourth stage focuses on defining object properties. Finally, in stage five,
the LLM creates datatype properties. Each stage has a tailored header, helper,
and footer to guide the LLM and avoid distractions. A query is dispatched to
the memory at each stage to retrieve previously generated OWL code, then
appending the new results, finally resulting in a complete ontology.

Sub-task Decomposed Prompting - Competency Question by Competency Ques-
tion (CQbyCQ): This approach instructs the LLM to address one CQ at a time
as a decomposition of the requirements. The header guides the LLM to formu-
late the ontology for the specific CQ, and the memory integrates the output
with the previous ones. The helper, story, and footer sections remain similar to
the Zero-shot approach. After modelling the final CQ the result is an integrated
ontology for the entire narrative, i.e. by simply merging CQ-specific ontologies.
Fig. 1 illustrates a typical prompt using this prompting technique.

Fig. 1. An excerpt of a representative example of a prompt for CQbyCQ, with the
sections of the prompt marked. Grey text is constant for all stories when using the
same prompting technique, while green boxes are placeholders for the input story and
CQs. The first green box contains the CQ that will be modelled, and the second green
box contains the ontology story and its total set of requirements.

Chain of Thoughts (CoT): In the context of the CoT [36], CoT-SC [34], and
GoT [5] , the concept of ’thoughts’ is a series of steps that the LLM carefully
crafts for itself, where the end result is an ontology. The CoT framework instructs
the LLM to create a plan based on the narrative and its associated CQs. The
prompt guides the execution of only the next step at a time, requiring OWL
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code exclusive to that step. The outcome of each step is stored in memory and
added sequentially to the prompt. By following this approach, the ontology is
developed progressively by following the generated plan.

Self Consistency with Chain of Thoughts (CoT-SC): CoT-SC [35] is similar to
CoT but involves three distinct plans and three outputs. The LLM evaluates and
picks the best plan. To ensure diversity of plans, exclusively for this prompting
technique, temperature and penalty parameters are adjusted from 0 to 0.5. This
allows for exploration of a broader range of potential ontologies.

Graph of Thoughts (GoT): We modified GoT [5] to enhance efficiency and
cost-effectiveness. Similar to CoT-SC, the LLM generates three plans and OWL
files representing unique ontologies. However, our GoT integrates ideas (instead
of picking the best) and solutions from all three into a single ontology, providing
a broader perspective for crafting a more effective ontology. This streamlines
ontology generation and ensures a more nuanced representation of the story.

3.3 Experimental Setup

In our experiments, we analyse the ontologies produced using a specific com-
bination of prompting techniques and LLMs. Initially we focus on small tasks,
created specifically to trigger certain OWL constructs, before then moving on to
more realistic tasks, represented as stories and CQs. The resulting ontologies are
at each stage manually evaluated against a set of criteria. In the final stage, the
same evaluation is also made for a set of student submissions from a master’s
course, serving as a baseline for comparison.

Initial Experiment Studying all combinations of LLMs and prompting tech-
niques on realistic tasks, to counteract stochastic variations, is too time-consuming
as human experts are required to evaluate the LLM-generated results in detail.
We, therefore, first performed a preliminary investigation to assess the perfor-
mance of each LLM-prompting technique combination using a curated set of
small tasks, to be able to already rule out a set of less promising combinations.
The small tasks were created as concise narratives intended to produce a very
small OWL solution but still test the ability of the LLM to produce models
that are not necessarily straightforward and, in some cases, do not conform to
common intuition. The preliminary experiment is organized into two phases.

During the first phase (Fig. 2, part 1), ontologies are constructed based on
three distinct narratives, 6 prompting techniques, and using 11 different LLMs.
Narrative 1 includes the challenge of modelling a restriction, where an instance of
a class then violates that defined restriction, and hence a reasoner should detect
the inconsistency. Narrative 2 includes the modelling of domain and range re-
strictions on properties, and when an individual uses this property, the individual
should be classified according to the domain or range (even if this is, in common
sense, counterintuitive). This design is to make sure the LLMs follow given in-
structions rather than basing their output on prior (common sense) knowledge.
The third narrative simply requires the existence of a particular class definition.
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The difference is that in the third case, a new class or a set of restrictions must
be added without explicit information in the narrative itself.

Fig. 2. The two initial experimental phases, aiming to filter out LLMs. Initially, several
LLMs are assessed on small tasks. Additional criteria in phase 2 are used to filter out
more LLMs, and also prompting techniques.

During this phase, minor syntax errors or other minor discrepancies will not
be considered crucial since the primary goal is to pave the way for an inter-
active tool where such issues could be effortlessly rectified, in some cases even
automatically by a syntax validation and correction process. After such syntax
correction has been made, the resulting Turtle files are evaluated against one
narrative-specific criteria each, similar to the ontology testing methods of error
provocation and inference verification [8]. A reasoner is therefore executed over
the resulting ontologies from narratives 1 and 2, and the results examined. For
narrative 1, an inconsistency should be detected, and for narrative 2 the type of
a specific individual is analyzed. For the third narrative, inference verification
[8] is used. If the LLM was able to successfully model any one of the narratives
(using any prompting techinque) it is retained for the next phase.

In the second phase, ontologies generated in phase 1, that passed the initial
evaluation, are further inspected using a set of criteria derived from what content
is expected based on the input narrative. We examine the OWL code generated
by the models manually and assess it based on simple binary criteria to reduce
the subjectivity of evaluators. The following criteria were used in this phase,
where all except the last of these categories are expected in the result of each
narrative: (1) Presence of an ’EquivalentClass’ restriction. (2) Presence of a
reification class, i.e. a class not explicitly mentioned in the narrative but needed
to model an n-ary relation. (3) Correctness of the Turtle syntax. (4) Presence
of domain and range for properties (at least one restriction). (5) Presence of
a class hierarchy axiom (rdfs:subClassOf). (6) Semantic coherence of all class
hierarchy axioms. (7) Presence of a datatype property. (8) Presence of instances
(if specified by the story, one narrative does not require it). Then, by averaging
the scores over these binary criteria across three tasks, we derive a score for



Navigating Ontology Development with Large Language Models 9

each LLM-Prompting technique combination (c.f. Fig. 2, phase 2), and LLM-
prompting technique combinations with scores over 0.9 are retained.

Main Experiment The primary objective of our main experiment is to eval-
uate the quality of OWL files generated by LLMs based on realistic ontological
requirements using different prompting techniques. Based on our initial exper-
iment, we have pre-selected a set of LLM-prompting combinations that seem
to give reasonable results, and now they are investigated further, i.e. using the
experimental setup in Fig. 3. Next, we compare the scores of the LLM-generated
ontologies to the same scoring of the first and last student submissions on a
course task, using exactly the same ontology stories.

Our evaluation criteria are centred on the extent to which the ontology can
address the CQs. We assess this by determining whether a SPARQL query can
be written, representing each CQ, for retrieving relevant data as expressed us-
ing the ontology, which has been previously suggested as a suitable ontology
testing method (c.f. CQ Verification [8]). If the ontology enables successful data
retrieval, it passes the test for that CQ. This is then aggregated over the CQs of
each story, calculating the proportion of successfully modelled CQs. Two vari-
ants of the assessment are used, i.e. either with or without considering minor
issues. Minor issues are defined as situations where (1) a single syntactic error is
detected, or (2) a single object property or datatype property is missing, prevent-
ing the formulation of a correct SPARQL query by one single triple pattern. The
rationale behind these being minor issues is that if all other components, e.g.,
classes, restrictions, and other properties, are present, then adding one single
property is an easy task even for a novice modeller.

For scoring the solutions we calculate the following: Let O be the generated
model, CQi represent i-th CQ, n be the total number of CQs, and f(O,CQi) be
a function that evaluates the model O with respect to CQi and returns a value
from {0,1}. The total score is then given by:

score =

∑n
i=1 f(O,CQi)

n

Baseline Dataset The three ontology stories, with associated CQs, used in the
main experiment originate from a series of courses, at master’s and PhD level as
well as conference tutorials, (about 15-20 course instances in total). The tasks
were initially developed to allow for experimenting with tool and methodology
support for ontology engineering, hence, they are comparable in size (all three
stories are accompanied with 14 CQs and one additional statement) and level of
difficulty and cover a set of similar modelling problems (set in music, theater,
and hospital domains respectively). In particular, all three stories cover a fixed
set of modelling challenges, such as creating a coherent taxonomy, reification of
relations, use of domain and range, time-dependent relations, and restrictions
enabling instance classification, etc. For example, one story set in the theatre
domain implies the reification and time indexing of the participation relation
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Fig. 3. Architecture of the pipeline for generating and assessing the generated ontolo-
gies in the main experiment. The prompting technique determines the hyperparameters
of the LLM and creates a prompt text using the memory and a story, to send a request
to the MS Azure API. At the end of the pipeline, the human evaluator assesses the
ontology and a score for the prompting technique-LLM pair is generated.

when actors are engaged in an ensemble, while in the hospital story, the par-
ticipation is instead present through employment and membership in a union
during a certain time. This makes the tasks also ideal for experimenting with
LLMs, since they on one hand cover a broad set of modelling challenges, but
also represent three domain-specific variants of the challenges.

In the experiment setup of this paper we specifically used the solutions cre-
ated by student groups in a master’s course in 2009 (10 groups of students in
total). The students were part of a master’s program on information engineer-
ing and management, where all had some logic, modelling and programming
background but no ontology experience. Before encountering the tasks, the stu-
dents had a series of lectures on OWL and ontology engineering, and a basic
introduction to OWL and the Protégé tool, with some hands-on sessions.

For each assignment (ontology story) students submitted their first attempt,
received feedback, and in most cases had to improve their solutions before pass-
ing the assignment. Most groups submitted their solutions at least twice, in some
cases up to 5 times, to pass. Students worked primarily in pairs (but sometimes
3, or alone). The three stories were each modelled by 10 groups, and picking
the first students’ submissions and the last ones gives us a dataset of 60 OWL
files (i.e. 3 stories, modelled by 10 groups, and 2 solutions per group). The final
submissions contained approximately 23±3 classes, 24±5 object properties, and
8±3 datatype properties. We argue that the first submissions would be compa-
rable to what an average junior programmer would come up with after perhaps
studying some online tutorials, without task-specific guidance or feedback. While
the last student submission represents an acceptable solution to the modelling
problem, i.e., sufficient quality with only a few minor issues. This gives us two
baselines for comparison with the LLM-generated models, in terms of quality.

4 Experimental Results

For our experiments, we first make a basic assessment of the output quality of
OWL ontologies generated based on the three small narratives, allowing us to
make an initial selection of LLMs and prompting techniques. We then assess the
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quality of the LLM output, on the three larger tasks, and compare these results
against the ontologies produced by students, using these as a baseline.

4.1 Initial Experiment Results

Phase One: The initial phase of our experiment provided insightful observa-
tions regarding the performance of various LLMs in conjunction with different
prompting techniques. The results indicate that the open-source and smaller
models (<20B parameters) tested, i.e., LlaMA7B, LlaMA13B, WizardLM, Fal-
con7B, Alpaca-LoRA, and CodeLlama-13b, lack the capability to provide accu-
rate suggestions. These models consistently failed to produce relevant output to
any of the small tasks in this phase. The generated responses were either too
brief, ambiguous, only code fragments, or irrelevant text, such as trivial conver-
sations, altogether indicating a lack of ability to perform the specified tasks.

When considering larger models, LlaMA2-70B and Bard exhibited a notable
inability to generate outputs in the Turtle syntax. During the code review, we
identified numerous issues such as incomplete code, incorrect usage of prefixes,
irrelevant modelling for the given story, and numerous syntax errors. In stark
contrast, GPT-3.5 and GPT-4 emerged as the only models capable of successfully
completing the tasks. They consistently generated outputs that aligned with the
expected prompt, demonstrating a considerably higher level of proficiency in
ontology generation compared to the other models.

Furthermore, an analysis of the prompting techniques revealed the Sub-task
Decomposed Prompting approach, the waterfall method, failed to produce sat-
isfactory results across the three narratives, even when applied with GPT-3.5,
and failed in two out of three narratives with GPT-4. This suggests that, despite
refinements of the prompts after each failure of the LLM, this technique is not
effective for the task at hand. Additionally, the CQbyCQ technique proved too
complex for GPT-3.5, resulting in the LLM producing irrelevant output, or too
brief code fragments, leading to failures across all small tasks.

In summary, the results from phase one of the preliminary experiment under-
score the significant variation in performance across different LLMs and prompt-
ing techniques. Only GPT-3.5 and GPT-4 provided sufficiently high-quality re-
sults to proceed to the next phase.

Phase Two: For the retained models, the outputs were then evaluated based on
the established binary criteria (see Sect. 3.3, phase two). In aspects such as the
implementation of an ’owl:EquivalentClass’-restriction, presence of a reification
class, and the correctness of the Turtle syntax, GPT-3.5 exhibited considerable
shortcomings in comparison to GPT-4. For example, across all prompting tech-
niques, GPT-3.5 missed almost half of the necessary reifications while GPT-4
correctly modelled 95% of them. Overall, during this phase, GPT-4 outperformed
GPT-3.5 by approximately 15% on average for all criteria and prompting tech-
niques. Conversely, in criteria involving the expression of domain and range for
properties, the creation of a taxonomy using ’rdfs:subClassOf’, semantic coher-
ence in class hierarchies, the definition of datatype properties, and the provision
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of instances, GPT-4 and GPT-3.5 showed similar levels of competence. This
suggests that while GPT-3.5 is capable in certain aspects of ontology modelling,
it falls short in more complex and nuanced tasks. Regarding, prompting tech-
niques, the waterfall and Zero-shot techniques performed poorly on GPT3.5 and
GPT4, with scores below the threshold (0.9), and were therefore excluded.

Considering the overall performance in phase two, it was decided to proceed
exclusively with GPT-4 as LLM and CQbyCQ, CoT, CoT-SC, and GoT prompts
in the subsequent phases of our research. Again, it is worth noting that the
purpose of the study is to explore the feasibility of LLMs to assist in OWL
modelling, not to compare and quantify the capabilities of different models.

4.2 Main Experiment Results

Our experiment aimed to evaluate GPT-4 with remaining prompting techniques.
We ran the model three times for each technique and story, analysed all three
models with respects to addressed CQs (c.f. criteria in Sect. 3.3). The analysis
involved manually writing SPARQL queries that answer each CQ6. An example
SPARQL query for a reified relation in the hospital story is shown in Listing 1.1.
Scores were averaged over the results of the runs, thus reducing the effects of ran-
dom variations. Then, we compared these averaged outputs from our framework
against the average of the 10 student groups’ submissions.

Listing 1.1. Example of typical test case in the form of a SPARQL query.

# CQ: What role does a certain person have within a certain union
# group at a certain point in time?
SELECT ?role ?person ?union
WHERE {
?membership rdf:type :UnionMembership . #Reified relation
?membership :memberOf ?union .
?membership :member ?person .
?membership :role ?role .
?membership :startTime ?start .
?membership :endTime ?end .
FILTER (?start > "..."^^xsd:dateTime && ?end < "..."^^xsd:dateTime) }

In Fig. 4, each section depicts one ontology story and compares the perfor-
mance of students with the LLMs outputs. This comparison focuses on to what
extent the CQs have been addressed and presents scores as the proportion of
the CQs that passed the same test. However, we also provide a modified view
that ignores minor errors (annotated with ‘IG’), as defined in Sect. 3.3. The lat-
ter illustrates how overlooking minor mistakes, e.g., those which even a novice
ontology engineer can spot and fix, affects the overall effectiveness of the LLMs.

An observation from Fig. 4 is that by ignoring minor errors, CQbyCQ out-
performs all other prompting methods and students’ first submissions, while the
students’ last submissions typically yielded the best output. When comparing

6 The test is passed if a query can be formulated, i.e., no test data is used, and the
complexity of the queries has not been analysed so far.
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Fig. 4. Comparison of average scores (std and avg) of GPT-4, combined with the
selected prompting techniques, against students’ submissions, expressed as proportion
of CQs they sufficiently modelled. ‘StuFS’ represents students’ first submissions, and
‘StuLS’ students’ last submissions. ‘IG’ indicates results when minor issues are ignored.

students’ first and last submissions across all CQs, there was an average improve-
ment of approximately 20%. This improvement showcases the learning process
of students during multiple resubmissions and feedback. However, the CQbyCQ
scores were closer in performance to the students’ last submissions than their first
submissions. This implies that this technique is particularly effective, aligning
closely with the understanding students develop over time.

By disregarding minor issues, as shown in Fig. 4, there is a considerable
increase in the quality of the LLM-generated OWL files. This improvement sug-
gests that many errors in the LLM’s outputs are minor. The fact that overlooking
these minor issues leads to a substantial boost in performance highlights the po-
tential of LLMs in ontology generation. It underscores that with minimal human
intervention for error correction, regarding minor issues in the suggested model,
LLMs can be highly effective in assisting the modelling process.

To gain a deeper understanding of the types of CQs that posed challenges
for both GPT-4 and students in their modelling efforts, we categorized the CQs
into four distinct types, based on the intended modelling solution:

1. Simple Datatype Property: Includes CQs that can be addressed by adding
one or more datatype properties, e.g., CQs related to the date of an event.

2. Simple Object Property: Involves defining a connection between two classes
by creating an object property, e.g., providing the author of a book.

3. Reification: CQs that require the creation of an abstract class to connect
other classes, often in complex situations, e.g., the role of a person in an
event at a specific time is a question of reifying the ‘role-playing situation’.

4. Restrictions: This involves imposing restrictions on classes or properties, e.g.,
at least one article is always presented at each seminar.

In Table 1 we present the performance of GPT-4 using the previous prompting
techniques, as well as student submission, categorized by the four types of CQs
(columns) presented above, where minor issues are again disregarded. Each row
corresponds to an average score of different OWL outputs by models or students.
The key findings suggest the performance of the CQbyCQ technique stands out
in its ability to model simple object properties, datatype properties and apply
reification. It consistently performs at a level that is better or comparable to
other techniques. However, its effectiveness in creating restrictions is less reliable.
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The techniques CoT, GoT, and CoT-SC established restrictions more effec-
tively than other techniques, where CoT consistently succeeded in modelling
all restrictions. However, considering their overall performance, the picture is
more unclear, and additional experiments would be needed to distinguish their
benefits and drawbacks in detail.

Table 1. Scores of the solutions on four different categories of CQs: datatype property
(DP), object property (OP), reification (Reif) and restrictions (Rest). Minor issues
ignored. Rows represent solutions by prompting techniques/students’ scores.

Theatre Story Music Story Hospital Story
DP OP Reif. Rest. DP OP Reif. Rest. DP OP Reif. Rest.

CQbyCQ .93 .78 .55 .33 1.0 .94 1.0 1.0 1.0 .94 1.0 0
CoT .80 .50 .22 1.0 .80 .78 1.0 1.0 .53 .50 .44 1.0
CoT-SC .93 .55 0 1.0 .80 .89 1.0 1.0 .53 .66 .66 .33
GoT .86 .61 .44 1.0 .80 .94 1.0 1.0 .73 1.0 .66 .66
StuFS .64 .63 .43 .10 .84 .83 .87 .30 .78 .85 .73 .60
StuLS .92 .78 .73 .50 .94 .92 .90 .50 .94 1.0 .90 .60

5 Discussion

According to the findings, the utilisation of LLMs yields promising results in
the development of ontology engineering support. However, the generalisability
and verifiability of our results can be questioned due to the closed-source nature
of the LLMs. For instance, not all hyperparameters of the model are accessible,
and model updates may not necessarily improve performance. Even though the
previous GPTmodels are still accessible through MS Azure, hence at the moment
the experiments can be repeated, there is no future guarantee. Therefore, newer
versions need to be evaluated before being used, especially when it comes to the
performance of prompting techniques. In addition, future versions of open-source
models will hopefully reach similar performance as seen by GPT-4 in this study.
Another potential future direction would be to fine-tune the models to produce
OWL output and treat ontology stories and CQs. However, generating broad
training data for such fine-tuning might be a challenge.

Regarding validity, there is another potential concern, namely the leakage
problem, i.e. the ontology stories used in the experiments already being seen in
the training data of LLMs. The narratives for the initial experiment were written
for sake of the experiment, but are short enough that it cannot be guaranteed
they are not similar to modelling problems already available online. Ontology
stories of the main experiment were publicly available, e.g., on course websites,
but to the best of our knowledge, no modelling solutions have been publicly avail-
able, which significantly reduces the risk of potential leakage. However, further
experimentation is necessary to confirm the main experiment results to mitigate
this risk, e.g., by applying the method to novel use cases in new domains.
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A potential drawback to this effort concerns expenses. Our experiments used
realistic, but still small-scale input, and should the length of the stories increase
GPT-4 would become a pricey tool to use. Moreover, fine-tuning GPT-4 could be
even more expensive. Despite its extensive context size, GPT-4 is also still prone
to forgetting certain aspects of the context. This poses the risk of inadequate
modelling for large stories at a high cost.

Nevertheless, we still believe that ontology engineering will soon undergo
a similar transformation as we have seen for programming. Where on the one
hand, ontology engineering will be made accessible to much broader groups, and
on the other hand, modelling will be done at an unprecedented speed, also by
experienced ontology engineers, due to being able to automate simpler tasks
in the modelling process. However, the risks involved are similar to those of
using generative black-box methods in general, since the output may comprise
an unknown amount of bias, creating unexpected and unwanted side effects
when applying the ontologies in downstream tasks. Also, the performance may
vary significantly depending on the domain. The tasks used for our experiments
were set in common domains, such as music and theatre, while more specialised
domains might pose more complex challenges to an LLM modelling assistant.
Additionally, the generalisability of prompt structures needs further research.
While our prompts can certainly be reused for new tasks and domains, this study
is too small to ensure generalisability of the conclusions on prompt structure.

6 Conclusions and Future Work

In our study, we explored a set of prompting techniques, and assessed their
effectiveness for generating OWL ontologies, across a range of LLMs. By com-
paring the ontologies generated by LLMs with student solutions, using consistent
evaluation measures, we established a baseline for performance assessment. We
conclude that, at the moment, only GPT-3.5 and GPT 4 produce reasonable
OWL output in the first place. Further experimentation with GTP-4 revealed
that, when used with the CQbyCQ prompting technique, GPT-4 outperforms
the average quality of the initial submissions of students (novice ontology engi-
neers) and had a performance similar to their final submissions after multiple
feedback rounds, when ignoring minor errors. While for creating more complex
OWL constructs, e.g., restrictions, other prompting techniques yield better re-
sults. This allows us to conclude that GPT-4, and a combination of prompting
techniques, is currently most likely the best avenue ahead for creating an OWL
modelling assistant using out-of-the-box models.

Looking ahead, our next objective is therefore to develop a Protégé plugin
using such combinations and evaluate its efficacy in reducing the time taken for
ontology development by expert ontologists, as well as the level of support that
can be provided for novice modellers. Another avenue of future work would be
to investigate fine-tuning of models for ontology engineering tasks, and to assess
the performance of upcoming releases of open-source models.
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Appendix

Motivations, limitations and negative results

Prompt Components: As mentioned in the methodology section 3, there are
four sections in each prompt. At a quick glance, the header and story sections ap-
pear to be necessary since we provide a brief prompt and the story requirements.
The helper and footer sections may be considered optional. However, removing
the helper section causes the LLM to completely avoid modelling reifications and
misplacing properties, such as putting a datatype property as a range for an ob-
ject property. The helper begins by outlining strategies to establish a taxonomy,
which is otherwise often ignored by LLMs.

The footer, or pitfall section, also enhances the output significantly. It offers
the LLMs with common mistakes that they produce. Common errors that are
mentioned as pitfalls to avoid are: (1) Providing an empty output of the given
prompt. (2) Avoid the use of the Turtle syntax and instead provide a list of items
in Python syntax. (3) Avoiding to provide an OWL output without establishing
any taxonomy of classes. (4) In the thoughts prompting techniques, avoiding
to run the complete plan (several steps) at a current step, since LLMs can
ignore instructions and give the complete answer at the first step. (5) Providing
explanations instead of providing the code.

Ontology Design Patterns (ODPs) serve as guides for ontology engineer to
model an ontology. However, adding examples to prompts seems to degrade
output performance. Despite fitting the prompt and story, 32K context LLMs
tend to forget the ontology story (we tried with the 128K context GPT4-turbo
model and it failed). This could be because the large context is distracting the
current LLMs (this could be caused by the low performance of attention layers
in LLMs). We used the term “distraction” since the model starts modelling the
ODPs in the output instead of the given task.

Limitations: This study, while insightful, has several limitations. Our choice
of evaluation method was additionally influenced by the time constraints faced
by human experts in manually evaluating the outputs. While this approach was
necessary given the available resources, it may not capture the full depth and
nuances of LLM-generated ontologies compared to a more thorough, even though
time-consuming, manual evaluation.

Due to their extensive branching, the tree of thoughts and the full version of
the graph of thoughts techniques proved expensive. This complexity led to slower
processing times and increased costs, limiting their practicality for larger-scale
or time-sensitive applications.

We used the Microsoft Azure API to access GPT-3.5 and GPT-4, versions 613
trained until 2021. Consequently, our analysis did not consider any advancements
or updates in these models post-2021, including the introduction of seed features
in newer updates. This might limit the relevance of our findings in the context of
the latest LLM capabilities. The accessibility of hyperparameters in GPT-4 and
GPT-3.5 is limited, which presented challenges in our experiment. Despite setting
the temperature and penalty parameters to zero (except in plan generation for
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GoT and CoT-SC, where they were set to 0.5), we observed inconsistencies in
the outcomes when using identical prompts. This variability underscores the
significance of utilizing open-source LLMs for achieving more consistent and
reliable LLM performance rather than depending on unpredictable factors.

We faced another setback in our attempt to produce a more efficient OWL
code to reduce context size or general improvement of modelling. For example,
in CQbyCQ, when a CQ is addressed, we simply merge it with the previous
CQs instead of asking LLM to merge if this CQ has not been addressed. This
choice was made since LLMs often forgot to merge classes (or properties) from
the previous section, which resulted in incomplete modelling.

Lastly, we encountered another challenge by experimenting with few-shot
prompting techniques. In few-shot prompting, a few examples are provided to
LLMs as an example. We faced difficulty finding examples of ontology modelling
that were not too similar to the ontology story, as this could potentially provide
an answer to the LLM. However, this challenge may lead to a similar experiment
as the one we mentioned earlier in the usage of ODPs (LLM distraction due to
large context size).

Initial Experiment Result Details

Due to space limitations we were not able to present all details of the initial
experiment in the main paper body, merely a conclusion summary. The detailed
results of the initial experiment, phase 2, are instead reflected here. In Table 2,
the LLM-Prompting scores are presented, averaged over the three tasks and 8
criteria, and a threshold of 0.9 is chosen to pass.

Table 2. After conducting the initial experiment phase two, it was decided that CoT,
CoT-SC, CQbyCQ, and GoT would move to the next stage (score > 0.9). GPT-3.5
was excluded as its performance was found to be equal to or less than GPT-4.

Prompting Technique: Zero-shot Waterfall CoT CoT-SC CQbyCQ GoT

Score using GPT-3.5 0.77 0.86 0.91 0.6 0.77 0.73
Score using GPT-4 0.86 0.86 0.91 0.96 1 0.92
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