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Abstract. Link Prediction methods aim at predicting missing facts in Knowl-
edge Graphs (KGs) as they are inherently incomplete. Several methods rely on
Knowledge Graph Embeddings, which are numerical representations of elements
in the Knowledge Graph. Embeddings are effective and scalable for large KGs;
however, they lack explainability. KELPIE is a recent and versatile framework
that provides post-hoc explanations for predictions based on embeddings by re-
vealing the facts that enabled them. Problems have been recognized, however,
with filtering potential explanations and dealing with an overload of candidates.
We aim at enhancing KELPIE by targeting three goals: reducing the number of
candidates, producing explanations at different levels of detail, and improving
the effectiveness of the explanations. To accomplish them, we adopt a semantic
similarity measure to enhance the filtering of potential explanations, and we fo-
cus on a condensed representation of the search space in the form of a quotient
graph based on entity types. Three quotient formulations of different granular-
ity are considered to reduce the risk of losing valuable information. We conduct
a quantitative and qualitative experimental evaluation of the proposed solutions,
using KELPIE as a baseline.
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1 Introduction

Knowledge Graphs (KGs) emerged as a tool to represent, navigate and query the grow-
ing flood of data by encapsulating knowledge of complex domains into a form accessi-
ble to both humans and machines. A KG is a multi-relational graph composed of entities
and relations, represented as nodes and edges, respectively. KGs are often integrated
with ontologies, that formally define classes and relations, which allow for advanced
inference capabilities [18]. Several examples of large KGs exist, including enterprise
products, e.g., see [30,13], and various well-known open sources, e.g., [5,1,23].

Despite their effectiveness, working with KGs often suffers from their inherent in-
completeness [18], due also to the open-world semantics generally assumed in scenar-
ios that involve them as the result of a complex, incremental and distributed building
process. This underpins the importance of tasks like Link Prediction (LP) and triple
classification aiming, respectively, at inferring missing relationships between existing
nodes and deciding on the truth of (new) triples.
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Among the many LP methods grounded on Machine Learning (ML) models, those
based on Knowledge Graph Embeddings (KGEs) have emerged as a prevalent approach,
especially for their superior scalability (see [25] for a recent survey). KGEs map ele-
ments in the KGs to low-dimensional vector spaces, streamlining complex tasks via
linear algebra.

Nevertheless, such models tend to operate as “opaque boxes” whose predictions are
difficult to explain, thus undermining their credibility and trust. Indeed, this opacity can
be particularly problematic in contexts where understanding the reasons supporting the
predictions is critical, such as healthcare or financial decision-making. For example,
LP might help to find out potential connections between specific drugs and their side
effects [9]. In such cases, not only the predictions but also their underlying rationale is
essential, as these may influence decisions about investments on a drug.

To address this opacity, the field of Explainable Artificial Intelligence (XAI) [21]
has come into the spotlight. XAI aims at making the decisions of ML models more
transparent and understandable, enhancing human trust and comprehension across all
AI applications. Following [17], XAI methods can be divided into two categories:
a) post-hoc methods, for addressing specific model outcomes; b) global interpretability
methods, for offering a holistic understanding of the entire inference process.

We will focus on post-hoc methods, which are suitable for scalable LP models based
on numerical representations. In the post-hoc setting, given a prediction, the generated
explanation typically comprises a specific set of facts that have enabled the inference
through the model. A recent, effective, and versatile framework providing such kind
of explanation to LP tasks is KELPIE [26]. Specifically, KELPIE provides explana-
tions through three steps: (1) the pre-filter/extraction of a sub-graph designated as the
search space, (2) the combination of facts within this sub-graph into candidate expla-
nations, (3) the ranking of such possible explanations. Nevertheless, the pre-filter phase
is grounded on the exploitation of a topological measure that could lead to discarding
facts that can make up potentially valid explanations. Furthermore, the successive com-
bination of facts for building candidate explanations leads to an extremely large number
of possible explanations. Even more so, KELPIE is not able to offer explanations with
an adaptable level of detail. Some users might prefer a brief, high-level explanation,
while others might require a more detailed account.

Recognizing these limitations, we identified three specific research goals. Firstly,
adopting an alternative metric for the pre-filtering phase. Second, decreasing the number
of assessments of candidate explanations necessary to identify the optimal ones. Third,
to be able to generate explanations at different levels of detail. Overall, as a final goal,
we aim at improving the results for the metrics of end-to-end effectiveness.

In agreement with these goals, we formulate our contributions relying on formal on-
tologies often available in KGs. Firstly, we propose to adopt in the pre-filter/extraction
phase a measure of semantic similarity between entities so to focus on facts semanti-
cally related to the prediction, thus potentially more suitable as part of an explanation.
Secondly, our proposal is to compute a summarization of the search space using dif-
ferent formulations of quotient graphs so to speed up the search, ground it on clusters
of semantically related facts and offering explanations at different levels of granular-
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ity. We also experimentally prove that these contributions are actually able to improve
effectiveness and efficiency.

The rest of this work is organized as follows. Sect. 2 introduces basic notions that
are essential for the paper. Sect. 3 reviews existing approaches for explaining link pre-
dictions. Sect. 4 provides details on KELPIE, then outlines the proposed contributions.
The experimental evaluation of the resulting approach is illustrated in Sect. 5. Finally,
Sect. 6 summarizes achievements and limitations, delineating future works.

2 Fundamentals

2.1 Knowledge Graphs and Embedding Models

A KG is a graph-based data structure G(V, E) with V representing a set of nodes, also
known as entities, and E representing a set of edges, labeled with relationships which
connect pairs of entities.

In the adopted RDF model, a KG is a collection of triples in the format ⟨s, p, o⟩, i.e.,
subject, predicate, and object where s, o ∈ V and p ∈ E . In RDF, the terms are denoted
by the elements of the sets U (URIs), B (blank nodes) and L (literals). Consequently,
an RDF graph is a set of triples with: s ∈ U ∪ B, r ∈ U , and o ∈ U ∪ B ∪ L.

Various models have been proposed for representing KGs in low-dimensional vector
spaces, by learning a unique distributed representation (or embedding) for each entity
and predicate in the KG and considering different representation spaces (e.g., point-
wise, complex, discrete, Gaussian, manifold). Here we focus on vector embeddings in
the set of real numbers.

In an ML setting, a KG G may be further split into a training set Gtrain , a validation
set Gval and a test set of triples Gtest . Irrespective of the specific learning approach, these
models all represent each entity x ∈ V by means of a continuous embedding vector
ex ∈ Rk, where k ∈ N is a user-defined hyper-parameter. Similarly, each predicate
p ∈ E is associated to a scoring function fp : Rk × Rk → R. For each pair of entities
s, o ∈ V , the score fp(es, eo) is a measure of the plausibility of the statement encoded
by ⟨s, p, o⟩. The embedding of all entities (and predicates) in G is learned by minimizing
a loss function, often a margin-based one.

2.2 Quotient Graph

In the context of KGs, quotient graphs aim at summarizing the data graph into a higher-
level topology [8]. They are based on the concept of a quotient set and equivalence
classes. Given a set X and an equivalence relation ∼ on it, X is partitioned into disjoint
subsets of equivalent elements, the equivalence classes. The quotient set X/∼ contains
all equivalence classes.

Before diving into the specifics of the quotient graph formation, we introduce the
notions of simulation and bisimulation, and we report the definitions as provided in
[18]. A simulation is a binary relation from a graph G to a graph G′ that maintains the
existence of a path between connected nodes in G to G′. Formally:
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Definition 1. A simulation from a graph G(V, E) to a graph G′(V ′, E ′) is a relation
R ⊆ V × V ′ such that for every edge ⟨x, y, z⟩ in G, if x R x′ for some x′ ∈ V ′, then
there exists z′ ∈ V ′ such that z R z′ and ⟨x′, y, z′⟩ is an edge in G′. G′ simulates G
when a simulation exists from G to G′.

A stronger, symmetric extension of this relation can be defined as follows:

Definition 2. A bisimulation between G and G′ is a relation that is both a simulation
from G to G′ and a simulation from G′ to G. When a bisimulation exists on G and G′,
they are bisimilar.

Given a KG G(V, E), its quotient graph Q(V/~, E/∼) is a graph with node set V/∼
as the quotient set of V according to the equivalence relation of choice, and edge set
E/~, that can be defined in different ways, depending on the desired level of preserva-
tion of the structure. In the case of simulation, an edge ⟨X, y, Z⟩ in the quotient graph
exists if and only if there exists x ∈ X and z ∈ Z such that an edge ⟨x, y, z⟩ is in
the original graph G. Bisimulation, on the other hand, imposes a stronger condition:
⟨X, y, Z⟩ is an edge in the quotient graph when, for each x ∈ X , there exists a z ∈ Z
such that ⟨x, y, z⟩ is in the input graph.

Bisimulation also involves refining the quotient nodes to split the ones that contain
nodes with different outgoing edges in the original graph. To clarify, two nodes belong
to the same quotient node if they share identical outgoing edges in the original graph
and are in the same equivalence class. This is equivalent to finding the Relational Stable
Coarsest Partition (RSCP) [15].

To summarize, the steps to compute a quotient graph bisimilar to G are the follow-
ing: 1) compute V/∼ as seen before; 2) compute the RSCP to refine V/∼; 3) add the
edges to E/∼. If an equivalence relation is not available, the RSCP can be computed
directly on V .

Several algorithms to compute RSCP are available [22,14], however, such imple-
mentations are not suitable for multi-graphs, i.e., graphs that allow multiple parallel
edges between the same pair of nodes, and therefore KGs. Indeed, these algorithms
take into account only one of the multiple edges between the same pair of nodes, since
all edges are assumed to be of the same type. To address the issue, the input graph can
be pre-processed as formalized in [7]. Specifically, each triple ⟨s, p, o⟩ is represented as
an unlabeled edge connecting s to the node (p, o).

3 Related Works

In this section, we specifically focus on post-hoc methods for explaining LP. Recent
solutions are grounded on the exploitation of a data poisoning technique [33] in order to
determine a single fact that, if inserted or eliminated, would most significantly poison
the prediction. Another example is CRIAGE [24], which addresses the computational
challenges of earlier models [19], but lacks clarity on the model adaptability and focuses
on limited cases (solely those facts where the object is either the subject or the object
of the prediction).

An objective that is receiving increasing attention and that is targeted in this pa-
per is the development of model-independent explainability solutions. CROSSE [35]
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and APPROXSEMANTICCROSSE [10] analyze the KG topology instead of the model’s
behavior and find the paths from the subject to the object supported by analogous situ-
ations in the graph, i.e., with similar paths connecting similar entities. The LP model is
used only to exclude relations and entities.

KELPIE [26] explains a prediction by returning a specific set of relevant facts rather
than a single fact. To evaluate the relevance of a candidate explanation, KELPIE employs
a novel post-training process which can be tailored to different KGE models. Similarly
to KELPIE, KGEX [2] provide sets of facts as explanations, but employs sub-graph
sampling and Knowledge Distillation of surrogate models. A complementary approach
is proposed in [3], it provides explanation through abductive reasoning on a logical
theory learned through a symbolic rule learning approach.

KELPIE represents a very significant advance in the class of model-independent
explanation solutions. Nevertheless, it has some drawbacks: (i) in the initial filtering of
facts it employs a topological measure which may be a limited insight on the correlation
between the training facts and the prediction to explain, (ii) the combination of facts for
building candidate explanations leads to a very large number of possible explanations,
(iii) the explanations are solely provided as sets of facts, thus not encompassing more
general insights such as the classes of the entities. This paper intends to overcome all
these limitations.

In parallel to post-hoc explanation solutions, also inherently interpretable LP mod-
els are available as for the case of XTRANSE [34], the work in [4], and GNNEX-
PLAINER [32] targeting specifically Graph Neural Networks. These methods aim at
making the model itself interpretable, whereas our goal is to develop a model-agnostic
post-hoc solution for explaining LP results.

Also, general-purpose XAI methods have been developed, i.e., solutions that are
independent of the task to explain. Such general-purpose approaches can be distin-
guished between those that identify relevant features of the input data as explana-
tions, called saliency explanations, and those that identify training samples as expla-
nations. Saliency-based frameworks (like SHAP [20] grounded on Shapley values [28])
are rather popular, but they are not easily adaptable to the LP task since they require
interpretable input attributes, which are suitable for images or text, but fall short for
LP using graph embeddings, where input samples are numerical. Indeed, in this case,
saliency-based methods merely highlight the most significant components of vectors in
relation to the outcome, lacking human interpretability. As for the methods identifying
training samples as explanations [19], the notion of Influence Functions from robust
statistics [27] has been exploited, resulting in a very high resource demanding solution.

4 The Proposed Approach

We propose a method for providing post-hoc explanations for LP on KGs exploit-
ing their semantics. Specifically, moving from KELPIE, we aim at the enhancement
of its main components. Our contributions capitalize on the exploitation of schema-
level information from the shared OWL ontologies adopted by the KGs. The resulting
new method remains independent of the KGE model. In the following, we summarize
KELPIE in Sect. 4.1, then we delineate the proposed extensions in Sects. 4.2, 4.3.
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4.1 KELPIE

KELPIE [26] stands out in the related works overview as it provides effective expla-
nations including multiple triples, it adapts to any KGE model, and it is supplied with
the resources to replicate the experiments. Therefore, we adopt it as the ground of our
approach. We now delve into details on how it works. Given a predicted triple ⟨s, p, o⟩,
a KELPIE explanation consists in a set of training triples featuring s that have enabled
to predict the object o through the model. KELPIE, is structured around three main
components:

– The Pre-Filter selects the most useful triples featuring s
– The Explanation Builder combines the pre-filtered triples into candidate explana-

tions and identifies the most relevant ones.
– The Relevance Engine computes the relevance of a candidate explanation adopting

a ML technique called post-training, coined by the authors.

We further detail each component individually.
The Pre-Filter aims at decreasing the complexity for the subsequent stages. Firstly,

it extracts the sub-graph Gs
train of all the training triples featuring s as subject or as

object. Then, it filters this sub-graph to obtain Fs
train by selecting the top-k most use-

ful triples. The utility measure is based on graph topology. Specifically, for any given
⟨s, q, r⟩ (or ⟨r, q, s⟩), it computes the length of the shortest path connecting r to the
predicted object o, ignoring the direction of the edges.

The Explanation Builder’s task is to find a set of triples in Fs
train representing an

optimal explanation X∗ according to their relevance. It combines the triples in Fs
train

into candidate explanations (each denoted as X), and determines whether any X can
be accepted as X∗ based on its relevance. Identifying X∗ is a search problem within
a space (S) of candidate explanations of varying lengths, but exhaustive search is im-
practical. Indeed, Kelpie implements heuristic conditions to prune the search space.

The process is summarized in Algorithm 1. The method first computes the relevance
of each triple in Fs

train used as a 1-triple explanation (Line 1). Before exploring any Si

with, i > 1 the algorithm computes the preliminary relevance of each explanation as the
average relevance of its triples (Line 4). The subset Si is then traversed in descending
order of preliminary relevance. For each explanation, the Relevance Engine computes
its true relevance (Line 8) and the algorithm checks if it meets the acceptance criteria
(Line 9). The decision on whether to continue exploring the current subset or to move
on to the next one is guided by ρi, which is defined as the ratio of the relevance of
the current explanation to the highest relevance found so far in the subset (Line 14). If
ρi becomes too small, indicating likely less relevant future explanations, the algorithm
decides whether to move on to the next subset, with probability 1− ρi (Lines 15-16).

The Relevance Engine adopts two alternative, yet complementary methods, namely
necessary relevance and sufficient relevance. Both methods ground on a 4 steps ap-
proach: (a) create s′ as a duplicate of s, (b) compute the set Fs′

train as Fs
train − X for

necessary relevance and as Fs
train ∪X for sufficient relevance, (c) learn the entity em-

bedding of s′ through post-training, (d) compute the difference between the scores of
the triples ⟨s, p, o⟩ and ⟨s′, p, o⟩. Moreover, for sufficient relevance, instead of being
applied on s, the process is iterated on the elements of a set C of random entities c for
which the model does not lead to the object o for predicting the filler of ⟨c, p, ?⟩.
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Algorithm 1: Algorithm for identifying the explanation X∗

Input: the triples in Fs
train ; the Relevance Engine engine;

the acceptance threshold ξ0; the explanation size limit imax;
Output: The smallest combination X∗ whose relevance exceeds ξ0;

1 triple to relevance← {t : engine.compute([t]) for t in F s
train};

2 for i← 2 to imax do
3 Si ← combinations(F s

train , i);
4 pre relevances← [avg([triple to relevance[t] for t in X]) for X in Si];
5 Si ← sort(Si, pre relevances);
6 best relevance← None;
7 foreach X ∈ Si do
8 cur relevance← engine.compute(X);
9 if cur relevance > ξ0 then

10 return X;
11 else
12 if best relevance = None or cur relevance > best relevance then
13 best relevance← cur relevance;

14 ρi ← cur relevance/best relevance;
15 if random(0, 1) > ρi then
16 break;

4.2 Injecting Semantics in the Pre-Filter

The first new component of our proposed methodology is Semantic Pre-Filter, a refined
version of the Pre-Filter. We refine the method for assessing the utility of the triples in
Gs
train . We recall that in KELPIE the Pre-Filter calculates the utility of a triple ⟨s, q, r⟩

(or ⟨r, q, s⟩) with respect to the prediction ⟨s, p, o⟩ based on a breadth-first search (bfs)
measuring the length of the shortest non-oriented path connecting r to o. Now, we base
this calculation on the path (connecting r to o) with the least cumulative weight instead
of the shortest one, making the bfs weighted (wbfs). Specifically, the weight of an edge
connecting r to o is 1 − sim(r, o). Such weight is meant as a measure of the semantic
similarity between the two connected nodes. This enhancement involves the integration
of the approximated semantic similarity measure proposed in [10] as a measure over
pairs of entities. Namely, in [10] a function Cl is defined as returning classes to which
an entity can be proven to belong to, and its approximated version C̃l that simplifies the
needed realization service and allows bypassing the usage of retrieval required in Cl.

The semantic similarity measure sim is formally defined as a Jaccard measure on
a couple of entities r, o. Specifically, sim(r, o) = |C̃l(r)∩C̃l(o)|

|C̃l(r)∪C̃l(o)| .
For instance, consider a very simple KG with the following triples:

{ ⟨Barack Obama, signed,Obamacare⟩, ⟨Barack Obama, born in,Honolulu⟩,
⟨Honolulu, located in,United States⟩, ⟨United States, signed,Obamacare⟩ } and
the prediction ⟨Barack Obama, nationality,United States⟩. Both Honolulu and Oba-
macare are one-hop distant from United States. Nevertheless, Honolulu has higher
semantic similarity with United States than Obamacare.
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Algorithm 2: Algorithm for identifying X∗ in the quotient graph
Input: The set Fs

train of training triples; Cl function;
the Relevance Engine object engine;
the acceptance threshold ξ0; the explanation size limit imax;

Output: The smallest combination X∗ whose relevance exceeds ξ0;
1 Qs

train ← compute quotient graph(F s
train , Cl);

2 quot to orig ← compute mapping(Qs
train , F

s
train);

3 triple to relevance← {};
4 foreach triplequot ∈ Qtrain

s do
5 triplesorig ← quot to orig([triplequot ]);
6 triple to relevance[triplequot ]← engine.compute(triplesorig);

7 for i← 2 to imax do
8 Si ← combinations(Qs

train , i);
9 Si ← preliminary sort(Si, triple to relevance);

10 foreach Xquot ∈ Si do
11 Xorig ← quot to orig(Xquot);
12 cur relevance← engine.compute(Xorig);
13 check accept threshold(cur relevance, ξ0);
14 update best relevance(best relevance, cur relevance);
15 check early exit(best relevance, cur relevance);

This integration of semantics fundamentally changes how the Pre-Filter assesses
the utility of triples within the Gs

train set. The intuition behind this enhancement is to
acknowledge the semantic relationships between nodes (entities). Adopting this refined
version, Fs

train will eventually contain triples that are not only topologically, but also
semantically related to the prediction. This contribution may result in a more accurate
extraction of Fs

train enhancing the effectiveness of the explanations; thus addressing
our final research goal.

4.3 Injecting Semantics in the Explanation Builder

We propose Quotient Explanation Builder to enhance the Explanation Builder compo-
nent of KELPIE. In brief, given a prediction ⟨s, p, o⟩ to explain, the Explanation Builder
combines the pre-filtered training triples (Fs

train ) into candidate explanations and then
identify optimal ones (details in Algorithm 1).

Our enhanced version tackles the goal of limiting the combinatorial explosion when
computing candidate explanations by introducing a suitable summarization step of the
input subgraph. For the purpose, the method relies on the notion of quotient graph,
presented in Subsect. 2.2.

We formalize Quotient Explanation Builder in Algorithm 2. The algorithm requires
the same parameters as the original formulation, along with the inclusion of the C̃l func-
tion. Initially, the algorithm computes the quotient graph Qs

train of Fs
train exploiting C̃l

to determine the equivalence relation (Line 1).
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Fig. 1: sub-graph on Keanu Reeves (a) and its (simulation) quotient graph (b)

We refer to a triple in the quotient graph as a quotient triple (triplequot ), and to a
triple in the original graph as an original triple (tripleorig ). The nodes in the quotient
graph are equivalence classes of nodes in the original graph; hence, each quotient triple
is mapped to its inherently equivalent original triples (Line 2).

For example, we consider Keanu Reeves as the subject s, for which we re-
port Fs

train in Fig. 1a and its quotient graph in Fig. 1b. The quotient triple
⟨s, actedIn, cyberpunk movies⟩ (where cyberpunk movies is a class) is mapped
to the original triples: ⟨s, actedIn,The Matrix⟩, ⟨s, actedIn,The Matrix Reloaded⟩,
⟨s, actedIn,The Matrix Revolutions⟩, ⟨s, actedIn, Johnny Mnemonic⟩.

The subsequent steps in Algorithm 2 follow a procedure similar to Algorithm 1, but
performing all the computations on Qs

train . It computes the relevance of each quotient
triple used as a 1-quotient-triple explanation. It first retrieves the original triples that it
corresponds to (Line 5), then it computes the relevance of such original triples using the
Relevance Engine (Line 6).

The process then continues by exploring combinations of quotient triples from the
smallest size (2) up to a specified limit imax (Line 7). Si is sorted in descending order
of preliminary relevance, then the algorithm computes the relevance of each Xquot .
Similarly to the case of 1-quotient-triple explanations, it retrieves the corresponding
original triples (Line 11), then it computes their relevance (Line 12). The remaining
lines check the heuristic conditions.

The quotient graph condenses the original graph, thus addressing the goal of de-
creasing the number of candidate explanations. Moreover, quotient graphs contribute to
the other goal of generating explanations at varying levels of detail, as both the quotient
triples and the entities within the quotient nodes can be output. Finally, the inherent
grouping of entities in a quotient graph may enhance the effectiveness of explanations
addressing the overall final goal.

A quotient triple represents a collection of similar original triples, so it provides
multiple pieces of evidence of the same kind. Hence, a set of quotient triples represents
different kinds of evidence, each backed by multiple pieces. This pattern furthers het-
erogeneity and robustness in the explanation. In essence, these goals hinge on grouping
of semantically related triples, an aspect effectively handled by quotient graphs.
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Fig. 3: fragment of Gs(+)
train (a) and its bisimulation quotient (b)

The introduced abstraction potentially enhances the method. However, it increases
the risk to bypass relevant smaller sets or individual triples. Hence, the use of the quo-
tient graph allows for a trade-off between abstraction and detail.

To optimize the choice, we propose three alternative formulations of the quotient
graph: (i) simulation quotient, (ii) bisimulation quotient, and (iii) depth-1 bisimulation
quotient. Algorithm 2 is agnostic of the formulation.

The simulation quotient computes the quotient graph according to the simulation
relation. Being the most abstract formulation, it is the most prone to ignore small sets
and individual triples. In Fig. 1b we already provided an example.

In the bisimulation quotient, we adopt the bisimulation relation. It splits some equiv-
alence classes to meet the stricter condition on edges, mitigating the risk of the first
method. For instance, in Fig. 2 the equivalence class cyberpunk movies is split in two
nodes according to the presence of the property hasActor. This helps when the pre-
diction relies on either the first two movies or the other two. We clarify that, in this
formulation, we compute the RSCP of the partition resulting from C̃l rather than com-
puting it on the whole set of nodes in Fs

train , thus maintaining the semantic information
provided C̃l. We also recall that to compute RSCP, a pre-processing step is required
converting each triple ⟨s, p, o⟩ to an unlabeled edge from s to a new node p, o. How-
ever, for the new nodes C̃l is not defined. To address this aspect, we have extended C̃l
so to assign each new node to a separate equivalence class.

So far, information not directly featuring s was not taken into account while look-
ing for local explanations. However, additional information may be employed only to
further refine the equivalence classes, leading to the depth-1 bisimulation quotient. The
algorithm starts by finding the depth-1 sub-graph of s (Gs(+)

train ) which includes neighbors
of neighbors of s. In Fig. 3a we exemplify this by reporting a fragment for s = Keanu
Reeves. Secondly, it computes the bisimulation quotient of Gs(+)

train , as shown in Fig. 3b.
The equivalence class {The Matrix Revolutions, Johnny Mnemonic} is further split in
two nodes according to the property produced by. This helps when the prediction solely
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relies either on The Matrix Revolutions or on Johnny Mnemonic. In this formulation,
quotient triples that do not include s will arise. They can be discarded as the graph
is expanded only for refining the equivalence classes rather than increasing the set of
candidate explanations.

In conclusion, we remark that bisimulation quotient and depth-1 bisimulation quo-
tient have a finer granularity than simulation quotient, but still explanations are more
abstract than those produced by KELPIE. The depth-1 bisimulation quotient, that is the
finest of our formulations can still bypass individual triples, only KELPIE assesses the
relevance of all the triples in Fs

train . Our assumption is that the bypassed triples are less
relevant explanations than the sets resulting from the quotient graphs by virtue of the
heterogeneity and robustness of explanations resulting from the combination of quotient
triples.

5 Experimental Evaluation

In this section, we illustrate the experiments carried out to assess our contributions
with respect to our research goals (stated in Sect. 1). All the code, datasets, and trained
models utilized in our study are openly accessible on GitHub3. In this section we present
our experimental setting, then we provide quantitative and qualitative results.

5.1 Experimental Setting

We performed the experiments on three datasets: DBpedia50 [29] (DB50K),
DB100K [12] and YAGO4-20. DB50K and DB100K are both samples of the DBpe-
dia KG. In contrast, we sampled YAGO4-20 from the YAGO4 [23] KG by extracting
triples about entities involved in at least 20 triples and then filtering out triples with
literal objects. We report statistics on the datasets in Tab. 1.

The common aspect of these datasets is that along with the RDF triples they include
or can be integrated with OWL (specifically OWL2-DL) statements including class
assertions, and other schema axioms concerning classes and relationships. We exploited
the HERMIT [16] reasoner offline to materialize the implicit class assertions in the KGs.
Next, we implemented C̃l as a simple lookup of class assertions to execute our method
without any other adjustment.

We highlight that for DB50k and DB100K, only the RDF triples are available off the
shelf. We retrieved the class assertions with custom SPARQL queries to the DBpedia
endpoint 4, while we employed the schema axioms provided by the full DBpedia 5. The
resulting KGs DB50K and DB100K proved to be inconsistent, while YAGO4-20 turned
out to contain unsatisfiable classes. We manually repaired the KGs (see Appendix A)
as such problems hinder the use of the reasoner.

KELPIE and consequently our extension, supports any LP model based on embed-
dings; therefore, we performed our experiments on TRANSE [6], CONVE [11] and

3 https://github.com/rbarile17/kelpiePP
4 https://dbpedia.org/sparql
5 https://databus.dbpedia.org/ontologies/dbpedia.org/ontology--DEV

https://github.com/rbarile17/kelpiePP
https://dbpedia.org/sparql
https://databus.dbpedia.org/ontologies/dbpedia.org/ontology--DEV
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Table 1: Statistics of the datasets
Entities Relations Train

triples
Valid
triples

Test
triples

DB50K 24620 351 32194 123 2095
DB100K 98776 464 587688 49172 49114

YAGO4-20 96910 70 555182 69398 69398

Table 2: Performance of the LP models
DB50K DB100K YAGO4-20

H@1 MRR H@1 MRR H@1 MRR
TRANSE 0.288 0.380 0.101 0.211 0.081 0.135
CONVE 0.366 0.410 0.285 0.360 0.163 0.213

COMPLEX 0.407 0.464 0.359 0.430 0.195 0.242

COMPLEX [31] as KELPIE adopts the same ones and these represent three prevalent
families: Geometric Models, Deep Learning Models, and Tensor Decomposition Mod-
els. Tab. 2 reports the LP performance of each model that we measured on each dataset
in terms of typical measures, namely Mean Reciprocal Rank (MRR) and Hits-at-1
(H@1) in their filtered variant.

We evaluate the approach adopting both necessary and sufficient relevance (details
in Subsect. 4.1). In both scenarios, we select a set P of 100 correct test predictions
randomly, for each model. Then, we adopt the methodology utilized by CRIAGE, and
subsequently by KELPIE, to assess if we meet our goal of optimizing the effectiveness.
Specifically, in the necessary scenario, after extracting explanations for all predictions
in P , we remove their triples and retrain the model. Since the original model correctly
led to those predictions, their initial H@1 and MRR are both 1.0; however, if the ex-
tracted explanations are indeed necessary, the inference through the retrained model
should fail to lead to the predictions in P . Therefore, the effectiveness is the decrease
in H@1 and MRR over P .

Conversely, in the sufficient scenario, for each prediction ⟨s, p, o⟩ ∈ P , we draw
a set C of 10 random entities c and extract sufficient explanations that should lead the
model to predict ⟨c, p, o⟩. We define PC as the set of these hypothetical 10×100 = 1000
predictions ⟨c, p, o⟩. As the original model did not lead to the predictions in PC by
design, their original H@1 and MRR are approximately null. However, if the extracted
explanations are indeed sufficient, the retrained model should lead to the predictions in
PC . Therefore, the effectiveness is the increase in the H@1 and MRR over PC . In both
scenarios, the variation metrics are denoted as ∆H@1 and ∆MRR. Moreover, as for
our first research goal, we aim at improving the efficiency by decreasing the number
of candidate explanations. Hence, we also measure the number of Relevance Engine
invocations (indicated by # r). In Appendix B we report details on the hyper-parameters
used for training the models, for the post-training in the extraction of the explanations,
and for the re-training in the evaluation of the explanations.

5.2 Quantitative Evaluation

In Tab. 3 we report the outcomes of the experiments on KELPIE with the various ex-
tensions in terms of the effectiveness and efficiency metrics. Firstly, we measure the
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Table 3: Results of the experimental evaluation
Necessary Sufficient

DB50K DB100K YAGO4-20 DB50K DB100K YAGO4-20
# r ∆H@1 ∆MRR # r ∆H@1 ∆MRR # r ∆H@1 ∆MRR # r ∆H@1 ∆MRR # r ∆H@1 ∆MRR # r ∆H@1 ∆MRR

T
R

A
N

SE

KELPIE 1234 -0.93 -0.867 2568 -0.69 -0.546 2614 -0.48 -0.356 1086 0.521 0.580 3109 0.317 0.443 6872 0.260 0.365
wbfs 1241 -0.94↑ -0.857 2420 -0.64 -0.511 2771 -0.49↑ -0.357↑ 1097 0.499 0.562 3065 0.323↑ 0.441 6953 0.299↑ 0.391↑
sim 510 -0.93 -0.856 1953 -0.63 -0.518 1437 -0.57↑ -0.450↑ 362 0.449 0.515 2464 0.298 0.426 3819 0.377↑ 0.475↑

bisim 752 -0.91 -0.815 1954 -0.58 -0.481 1470 -0.57↑ -0.433↑ 622 0.508 0.568 2345 0.287 0.422 3789 0.335↑ 0.441↑
bisim d1 925 -0.91 -0.836 2555 -0.61 -0.481 2461 -0.46 -0.332 804 0.528↑ 0.587↑ 3210 0.320↑ 0.440 6858 0.270 0.390↑

wbfs + sim 502 -0.94↑ -0.861 1860 -0.68 -0.566↑ 1458 -0.56↑ -0.443↑ 361 0.475 0.531 2465 0.301 0.432 3774 0.324↑ 0.434↑
wbfs + bisim 762 -0.90 -0.818 2037 -0.65 -0.551 1474 -0.55↑ -0.439↑ 632 0.482 0.556 2517 0.32↑ 0.446↑ 4035 0.343↑ 0.434↑

wbfs + bisim d1 938 -0.91 -0.824 2555 -0.65 -0.533 2422 -0.46 -0.333 813 0.499 0.565 3288 0.307 0.429 6239 0.278 0.387↑

C
O

N
V

E

KELPIE 818 -0.42 -0.385 1590 -0.60 -0.483 5349 -0.39 -0.263 1177 0.629 0.648 6090 0.141 0.184 9550 0.349 0.378
wbfs 817 -0.44↑ -0.397↑ 1558 -0.91↑ -0.833↑ 5481 -0.36 -0.256 1177 0.602 0.605 5485 0.140 0.201↑ 9514 0.345 0.381↑
sim 267 -0.50↑ -0.463↑ 1083 -0.84↑ -0.771↑ 3360 -0.41↑ -0.308↑ 520 0.610 0.599 4380 0.254↑ 0.333↑ 4953 0.386↑ 0.399↑

bisim 341 -0.48↑ -0.427↑ 1229 -0.64↑ -0.481 3269 -0.43↑ -0.322↑ 636 0.615 0.607 5230 0.381↑ 0.444↑ 5077 0.387↑ 0.396↑
bisim d1 518 -0.45↑ -0.390↑ 1891 -0.80↑ -0.697↑ 5258 -0.38 -0.282↑ 864 0.626 0.622 5158 0.423↑ 0.468↑ 8315 0.343 0.365

wbfs + sim 258 -0.42 -0.389↑ 1047 -0.79↑ -0.716↑ 3373 -0.39 -0.294↑ 530 0.565 0.576 5173 0.403↑ 0.467↑ 5013 0.379↑ 0.403↑
wbfs + bisim 350 -0.41 -0.375 1701 -0.85↑ -0.764↑ 3362 -0.41↑ -0.308↑ 634 0.635↑ 0.631 4580 0.247↑ 0.321↑ 5086 0.349 0.366

wbfs + bisim d1 518 -0.46↑ -0.396↑ 1919 -0.81↑ -0.727↑ 5030 -0.39 -0.277↑ 1026 0.658↑ 0.639 5717 0.386↑ 0.433↑ 9072 0.347 0.368

C
O

M
P

L
E

X

KELPIE 626 -0.98 -0.944 2682 -0.82 -0.723 3882 -0.65 -0.499 261 0.795 0.720 1263 0.658 0.705 1310 0.543 0.519
wbfs 626 -0.98 -0.944 2760 -0.84↑ -0.726↑ 3939 -0.59 -0.461 261 0.795 0.720 1263 0.659↑ 0.708↑ 1315 0.520 0.503
sim 549 -0.96 -0.895 1783 -0.80 -0.684 1515 -0.62 -0.510 219 0.777 0.716 774 0.526 0.624 576 0.475 0.463

bisim 571 -0.90 -0.872 1952 -0.85↑ -0.733↑ 1606 -0.62 -0.507 225 0.772 0.705 897 0.581 0.666 595 0.461 0.449
bisim d1 617 -0.98 -0.921 2419 -0.81 -0.693 2930 -0.61 -0.505 259 0.804↑ 0.726↑ 1228 0.657 0.697 1153 0.494 0.476

wbfs + sim 548 -0.97 -0.935 1758 -0.80 -0.710 1527 -0.64 -0.551↑ 217 0.790 0.723↑ 740 0.499 0.598 578 0.498 0.482
wbfs + bisim 573 -0.90 -0.872 1910 -0.81 -0.704 1584 -0.66↑ -0.534↑ 222 0.779 0.718 857 0.556 0.646 597 0.471 0.463

wbfs + bisim d1 617 -0.98 -0.921 2506 -0.83↑ -0.722 2900 -0.57 -0.471 259 0.804↑ 0.726↑ 1228 0.660↑ 0.699 1148 0.481 0.472

impact of the Semantic Pre-Filter (wbfs). Moreover, we gauge the effects of the Quo-
tient Explanation Builder in its various formulations: sim (simulation quotient), bisim
(bisimulation quotient), and bisim d1 (depth-1 bisimulation quotient). Finally, we as-
sess how KELPIE performs when equipped with both contributions reporting wbfs +
sim, wbfs + bisim, and wbfs + bisim d1. In all experiments, we set the Pre-Filter k
threshold to 20 as in KELPIE.

Across almost all configurations of scenario, model, and dataset, the Quotient Ex-
planation Builder improves the effectiveness through at least one of the alternative
formulations. Exceptions were observed in the necessary scenario with TRANSE on
DB50K and DB100K, the sufficient scenario with CONVE on DB50K, in the necessary
scenario with COMPLEX on DB50K, and in the sufficient scenario with COMPLEX on
YAGO4-20. The Semantic Pre-Filter improves its effectiveness either when adopted
independently or when combined with the Quotient Explanation Builder. It has no
benefit in the sufficient scenario with TRANSE on DB50K, in the necessary scenario
with CONVE on YAGO4-20, in the necessary scenario with COMPLEX on DB50K,
and in both scenarios with COMPLEX on YAGO4-20. We posit that the cases of limited
performance can be attributed to the selected predictions. Specifically, many predic-
tions may have a subject s associated with a limited number of triples in Gs

train , thus
leading to a limited search space. Explaining such predictions may be challenging also
for KELPIE itself as it looks for explanations in Gs

train where few potentially effective
explanations are available when explaining such predictions.

Particularly, for predictions associated with less than k (Pre-Filter parameter) triples
the Pre-Filter selects all the triples in Gs

train ; hence, any pre-filter is equivalent except
for the order of triples. Furthermore, in instances of graphs characterized by 2 or 3
triples, the compressive potential of quotient graphs is restricted, as the resulting quo-
tient graph precisely mirrors the original structure.
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Table 4: Examples of explanations with Quotient Explanation Builder and plain KELPIE
Simulation quotient

quotient triples entities

⟨Movie, actor, Gabourey Sidibe⟩ Casting By, Top Five, Seven Psychopaths,
White Bird in a Blizzard, Tower Heist, Precious

⟨TVSeries, actor, Gabourey Sidibe⟩ Empire (2015 TV Series)
Depth-1 bisimulation quotient

quotient triples entities
⟨Movie - subset 1, actor, Gabourey Sidibe⟩ Top Five
⟨Movie - subset 2, actor, Gabourey Sidibe⟩ White Bird in a Blizzard

⟨TVSeries, actor, Gabourey Sidibe⟩ Empire (2015 TV Series)
KELPIE

⟨Empire (2015 TV Series), actor, Gabourey Sidibe⟩
⟨Top Five, actor, Gabourey Sidibe⟩

⟨White Bird in a Blizzard, actor, Gabourey Sidibe⟩

For instance, for DB50K 98 out of 100 predictions with TRANSE are associated
with less than 20 triples, with 91 predictions associated with less than 5 triples. We
focused on streamlining the search in cases of very extensive search spaces, rather than
expanding the search space when it is limited. Indeed, for predictions on highly con-
nected entities for which the space of candidate explanations becomes very extensive,
our approach enhances KELPIE.

As regards # r, the impact of the Semantic Pre-Filter appears nearly negligible.
In contrast, the Quotient Explanation Builder is intended to optimize # r, indeed the
lowest value was observed in the cases of sim or wbfs + sim in all configurations. Next
values are those reported for bisim, bisim d1, and finally for KELPIE, that showed the
lowest efficiency, thus aligning with the quotient formulations that feature incremental
granularity, with simulation quotient being the most abstract. In only two cases, the
lowest value is reported for bisim, specifically in the necessary scenario with CONVE
on YAGO4-20 and in the sufficient scenario with TRANSE on DB100K. These cases
are likely due to meeting exceptionally early the heuristic conditions in KELPIE.

5.3 Qualitative Evaluation

In this part, we show a typical example of explanation output by the pro-
posed method, focusing on the impact of the Quotient Explanation Builder.
More specifically, we report necessary explanations for the prediction
⟨Gabourey Sidibe, nationality,United States⟩ found in the experiments with COMPLEX
on YAGO4-20.

In Tab. 4 we show the explanation computed using the simulation quotient and the
depth-1 bisimulation quotient and the baseline KELPIE. We omit bisimulation quotient,
as for this prediction it provides the same explanation of simulation quotient. The simu-
lation quotient provides as explanation both quotient triples (first column), and specific
entities (second column) supporting our third research goal. Indeed, the quotient triples
represent relationships between a class expression and the subject of the prediction;
then, the specific entities within such a class are explicated. For the given prediction,
the first form suggests that the model predicted the correct nationality because in the
training phase it had seen works like movies and TV series starring Gabourey Sidibe as
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actor which is useful to understand the inference made through the model with a gen-
eral insight based on classes. The second form indicates specific works, which is useful
to inspect specific instances and verify their commonalities. Indeed, all the works have
the United States as country of origin or are related to a producer or actor who, in turn,
is related to the United States. In the depth-1 bisimulation quotient the quotient triples
involve two specific subsets of movies, as in this formulation the equivalence classes in
the quotient can be split into multiple nodes according to outgoing edges. Indeed, the
two sets of movies feature different actors.

The baseline explanation is grounded on the same rationale, retrieving works related
to the United States. However, it provides a narrower array of evidence. The insight is
more precise and more easily comprehensible given its brevity, but limited in terms of
coverage. We claim that, despite its length, the explanation with the simulation quotient
is still intelligible because the effort needed to understand a single triple is approxi-
mately the same needed for a quotient triple with the corresponding entities. Thus, our
approach seems able to provide richer explanations with little extra effort required for
their interpretation.

6 Conclusions

We introduced a novel approach for explaining predictions made on KGs that enhances
the existing framework KELPIE. Specifically, we identified three research goals: de-
creasing the number of candidates, providing explanations on different levels of detail,
and improving explanation effectiveness. We employed a semantic similarity measure
to focus the process on triples semantically related to the prediction. Furthermore, we
employed quotient graphs to compact the search space for explanations. We experimen-
tally proved that our solutions furthers the goals on three datasets endowed with seman-
tic information and three representative LP models. We also qualitatively assessed the
impact of the quotient graph with respect to the third goal.

A natural progression of this work involves incorporating additional knowledge on
a semantic level, e.g., about relationships. Moreover, we plan to explore other graph
summarization techniques, such as those in [8]. Furthermore, we aim at improving the
explanations for the predictions associated with a limited number of triples. Finally, we
may involve users in the evaluation.
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Table 5: Hyper-parameters of the models
DB50K DB100K YAGO4-20

TRANSE
D: 256, p: 2, Ep: 65,
Lr: 0.0017, B: 2048,

γ: 5, N : 5

D: 256, p: 2, Ep: 133,
Lr: 0.0036, B: 2048,

γ: 5, N : 5

D: 128, p: 2, Ep: 59,
Lr: 0.0098, B: 2048,

γ: 10, N : 5

CONVE D: 200, Drop: {in: 0, h: 0, feat: 0},
Ep: 69, Lr: 0.018, B: 512

D: 200, Drop: {in: 0, h: 0.2, feat: 0},
Ep: 109, Lr: 0.0432, B: 512

D: 200, Drop: {in: 0.2, h: 0.1, feat: 0.3},
Ep: 512, Lr: 0.0427, B: 512

COMPLEX D: 200, Ep: 43, Lr: 0.043, B: 512 D: 200, Ep: 83, Lr: 0.0814, B: 512 D: 200, Ep: 88, Lr: 0.0425, B: 512

A Appendix: Repair of Inconsistent and Unsatisfiable Ontologies

We integrated the datasets DB100K and DB50K with OWL schema axioms retrieved
from various sources. The resulting ontologies were inconsistent; hence, we manually
repaired them. Moreover, YAGO4-20 turned out to contain unsatisfiable classes. Specif-
ically, we identified the causes of such problems by running the explanation facility of
the reasoner. In this appendix, we report some insights on the adjustments that we per-
formed to make DB100K consistent and YAGO4-20 satisfiable, hence “reasonable”. In
our GitHub repository, we report all the adaptations.

For DB100K, we modified the types for certain instances. For instance, our
SPARQL query to retrieve the class assertions returned Politician, and TimePeriod for
several entities. Such types led to inconsistencies as Politician is a subclass of Person
which, in turn, is disjoint with TimePeriod. We modified these entities, keeping only the
type Politician.

We also modified schema axioms in certain cases to preserve several triples, which
otherwise would have led to inconsistencies. For instance, we modified the range of
the property location. We recall that the range of a relationship p specify the classes
whose instances can occur as object in a triple with predicate p. We changed the range
from Place to Place⊔Company. Through this adjustment, we accommodate also triples
having location as predicate and an instance of Company as object.

In other cases, we needed to remove triples. For instance, we removed the triple
⟨Subramanian Swamy, region,Economics⟩. These triples caused an inconsistency be-
cause the type of Economics is, University which in turn is a descendant of Agent in the
class hierarchy. However, the range of region is Place which is disjoint with Agent.

For YAGO4-20, we removed certain subClassOf axioms. For instance, the class
Districts of Slovakia was a subclass of AdministrativeArea, Product, and CreativeWork.
The class Districts of Slovakia was unsatisfiable as AdministrativeArea is subclass
of Localization which is disjoint with CreativeWork. We modified it keeping only
AdministrativeArea and Product as super-classes.

B Appendix: Hyper-parameters

In this appendix, we report in Tab. 5 the hyper-parameters that we adopted to train each
model on each dataset. Furthermore, we employed the same set of hyper-parameters to
execute the post-training in the extraction of the explanations and to retrain the models
in the evaluation of the explanations.

Note that:
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– D is the embedding dimension, in the models that we adopted entity and relation
embeddings always have same dimension

– p is the exponent of the p-norm
– Lr is the learning rate
– B is the batch size
– Ep is the number of epochs
– γ is the margin in the Pairwise Ranking Loss
– N is the number of negative triples generated for each positive triple
– ω is the size of the convolutional kernels
– Drop is the training dropout rate, specifically:

• in is the input dropout
• h is the dropout applied after a hidden layer
• feat is the feature dropout

We adopted random search to find the values of the hyper-parameters. Exceptions
are given by B and Ep. For B we adopted the value leading to optimize execution
times and parallelism. For Ep we adopted early stopping with 1000 as maximum num-
ber of epochs and 5 as patience threshold during the training of the models, and we
reported the epoch on which the training stopped. Hence, we used such value as num-
ber of epochs in the post-training and in the evaluation. Furthermore, as in KELPIE, for
TRANSE we adopted the learning rate (Lr) values in Tab. 5 during training and evalua-
tion, but for the post-training we used a different value. For TRANSE the batch size (B)
is particularly large (2048) and usually exceeds by far the number of triples featuring
an entity. This affects post-training because in any post-training epoch the entity would
only benefit from one optimization step. We easily balanced this by increasing the Lr
to 0.01.
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