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Abstract. The SciQA benchmark for scientific question answering aims
to represent a challenging task for next-generation question-answering
systems on which vanilla large language models fail. In this article, we
provide an analysis of the performance of language models on this bench-
mark including prompting and fine-tuning techniques to adapt them to
the SciQA task. We show that both fine-tuning and prompting techniques
with intelligent few-shot selection allow us to obtain excellent results on
the SciQA benchmark. We discuss the valuable lessons and common er-
ror categories, and outline their implications on how to optimise large
language models for question answering over knowledge graphs.
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1 Introduction

Knowledge graphs have gained popularity over the last decades as fact stor-
age systems and, more recently, as retrieval backends for large language models
(LLMs) [18,30]. Most knowledge graphs are currently relatively simple semantic
structures and question-answering (QA) benchmarks have been designed mostly
for such structures and encyclopedic knowledge graphs such as DBpedia [25]
and Wikidata [39]. The SciQA ORKG benchmark [2] focuses on a new direc-
tion by leveraging the Open Research Knowledge Graph6(ORKG) [36], which
models scholarly artifacts and is meant to pose a challenge for next-generation
QA systems. Auer et al. [2] underline this by pointing out that the performance

⋆ Corresponding author.
6 Open Research Knowledge Graph - https://orkg.org

https://orkg.org
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of knowledge graph question answering (KGQA) systems as well as ChatGPT
(GPT-3.5 backend) on the benchmark is rather low.

The main goal of this paper is to dive deeper into analysing the LLM perfor-
mance on the SciQA. In particular, we studied the accuracy of different language
models on the SciQA ORKG benchmark and whether simple training or prompt-
ing approaches are already sufficient to address the challenges or whether more
sophisticated techniques are required. The most common approaches to improv-
ing the performance of a language model on a given task are appropriate prompt-
ing and fine-tuning. We investigated the impact of both strategies on different
language models. If a language model can be prompted to solve the task, then
this indicates that the model itself has the inherent capability to solve the prob-
lem but requires further context to direct its next-token prediction optimisation
towards solving the problem [41,14]. We were, therefore, particularly interested
in this direction and analysed the impact of zero- and few-shot learning tech-
niques on SciQA performance. For few-shot learning, we investigated different
example selection strategies leveraging semantic similarity [28], diversity [26],
and entropy criteria [19]. To ensure reproducibility, we released a repository
with the codebase and the prompts used in the experiments7.

The result of this study gives insights into how to optimise language models
for SciQA, and more in general, for scientific question answering. Our findings
demonstrate that different combinations of LLMs, both fine-tuned and utilizing
few-shot learning, achieve remarkable outcomes on the benchmark. Notably, the
best-performing model was the fine-tuned version of T5-base, a relatively small
language model. The fine-tuned version of GPT-2-large also performed well.
This suggests that low-resource models, when meticulously fine-tuned, can match
or even surpass the performance of larger, more resource-intensive models in
complex tasks like scientific question answering. GPT-3.5 also produced excellent
results using a few-shot approach based on the semantic similarity between the
question and the samples in the training set.

In summary, the contributions of this paper are the following:

1. Performance analysis of four language models for SciQA using three method-
ologies (zero-shot learning, few-shot learning, and fine-tuning).

2. Analysis of seven alternative approaches to select samples for few-shot learn-
ing for LLM-based KGQA.

3. Provision of several insights which indicate that optimising LLMs with ap-
propriate prompting and fine-tuning techniques is sufficient to obtain excel-
lent results (>94.1% exact query match accuracy and >97.5% F1-score).

The remainder of this paper is structured as follows. Section 2 discusses re-
lated works on knowledge graph question answering and LLM few-shot optimiza-
tions. The SciQA benchmark and the LLM models are described in Section 3.
Section 4 outlines the experiments and the metrics used for evaluation. Section 5
reports the results. Section 6 provides an analysis of the types of errors made
by the models while Section 7 discusses the limitations of our study. Finally,
Section 8 ends the paper with concluding remarks and future directions.

7 Codebase and prompts - https://github.com/NIMI-research/SciQA-LLM

https://github.com/NIMI-research/SciQA-LLM
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2 Related Work

Semantic Parsing for Knowledge Graph Question Answering. Semantic
parsing [21] is the process of converting an utterance in natural language into
a query with a format that machines can understand and by using a specific
formal language. This conversion is considered successful when the query accu-
rately represents the original intent of the natural language input. Various strate-
gies have been proposed for semantic parsing, encompassing Combinatory Cat-
egorial Grammars (CCG), rule-based systems, and neural-network-based meth-
ods [12,34,3,35]. The work introduced in [12] addresses semantic parsing using
neural network methods for knowledge graphs. Recent methods of semantic pars-
ing for KGQA often utilize sequence-to-sequence models, such as those described
by [34]. In these models, an encoder transforms a natural language utterance into
an intermediate representation. Subsequently, a decoder processes this represen-
tation to generate a logical form.

A type of neural network architecture that combines the features of both
sequence-to-sequence models and pointer networks is called pointer generator
networks [3]. These networks enable the replication of specific input segments,
such as data values, in the output. Although these methods show high accuracy
when trained with large amounts of high-quality data, the difficulties in obtaining
such data and the significant effort needed for updates lead to an increased in-
terest in training semantic parsers with fewer datasets. The work in [35] explores
an unsupervised approach for semantic parsing which shows promising results.
While promising, these methods have scalability issues for real scenarios. Addi-
tionally, they present challenges in terms of easy adjustability or tunability for
practical applications. LLMs such as GPT-2 [32], GPT-3.5 [9], and Dolly [15],
which builds upon the Pythia models [6] show potential in semantic parsing
with zero or minimal examples, especially following improvements to mitigate
inference costs. However, LLMs do not inherently support KG-specific parsing
without access to entities in the underlying knowledge graph. Consequently, they
require augmentation with a method for entity retrieval. A work that exploited
LLMs for KGQA semantic parsing is described in [24], where authors claimed
that training data requirements are substantially reduced when using controlled
natural languages as targets for KGQA. Some conversational agents also use lan-
guage models to map questions to a set of predefined templates that facilitate
the generation of queries [29].

The developers of the SciQA benchmark hosted the Scholarly QALD Chal-
lenge as a satellite event of the 22nd International Semantic Web Confer-
ence [4]. This resulted in the development of some dedicated methods for
SciQA [20,37,31], which usually involve additional components for incorporating
a representation of the ORKG ontological schema or detecting domain-specific
entities. In contrast, our study seeks to evaluate the performance of conventional
LLMs when augmented with fine-tuning and prompting techniques.

LLM Optimisation. In this paper, we focus on two standard optimization
techniques for LLMs: few-shot learning and fine-tuning. Few-shot optimization
in LLMs is a technique where the models are given one or more samples when
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performing a certain task. This contrasts with the zero-shot approach, where
LLMs function without any training data [22]. There are several ways of op-
timizing the examples for few-shot learning. Kumagai et al. [23] proposed an
approach that employs a feature selector and a decoder: the selector uses con-
crete random variables to choose relevant features for the decoder to reconstruct
the original features of unseen instances. The sampling method in Bansal et
al. [5] enables optimization-based meta-learning across diverse tasks with vary-
ing numbers of classes. Levy et al. [26] study how to select a diverse set of samples
in in-context learning. Similarly, Lin et al. [27] studied the few-shot learning ca-
pabilities of LLMs across a broad spectrum of tasks with a diverse selection of
examples. The recent Cross Entropy Difference method [19] also demonstrated
promising results, especially in semantic parsing. Another optimization method
is fine-tuning, a technique where a pre-trained LLM is further trained on a spe-
cific task or dataset to improve its performance for that particular domain [40].
Fine-tuning is particularly valuable when the labeled data for the target task are
limited, as it maximises the utility of pre-existing knowledge in the model [17].

3 Background

This section describes the SciQA benchmark and introduces the four models
employed in our experiments.

3.1 Dataset

We adopted as a benchmark the recent SciQA dataset8. SciQA includes 2,565
pairs, each composed of a natural language question and the equivalent SPARQL
query. The SPARQL queries are specifically designed to extract information
from the Open Research Knowledge Graph (ORKG) [36]. This KG presently
consists of 170,000 resources that detail the research contributions of nearly
15,000 scholarly articles spanning 709 research fields.

SciQA is a mix of manually crafted and automatically generated pairs of
questions and queries. Specifically, 100 pairs have been manually crafted by a
team of researchers from different countries and institutions. First, they selected
a number of research fields and relevant studies on ORKG to narrow down the
data scope. Next, they formulated natural language questions of various types,
such as single comparison, True/False, and aggregation questions. Each question
was then associated with a corresponding SPARQL query and relevant metadata
(e.g., type, query shape). The entire process underwent multiple peer reviews.
The authors sought diverse perspectives and consulted 21 domain experts in-
volved in ORKG curation grants to ensure the relevance and importance of the
questions. Next, from these initial 100 pairs, the authors identified eight query
templates and used them to automatically produce an additional 2,465 pairs
using the GPT-3 model [9]. Specifically, they defined a set of eight templates

8 SciQA dataset - https://huggingface.co/datasets/orkg/SciQA

https://huggingface.co/datasets/orkg/SciQA
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and 32 questions, with one manual question and three GPT-3-generated varia-
tions for each template. The query templates were then filled with all possible
entities from ORKG and the resulting queries were randomly assigned to one
of the four questions. The results of these queries were collected, and metadata
for the final question set was extracted. The addition of automatically generated
questions expanded the SciQA dataset to 2,565 questions. We report an example
of a question and query pair in Example 1.

The benchmark divides the dataset into three parts: 70% for training (1795
samples), 10% for validation (257 samples), and 20% for testing (513 samples).
Table 1 reports relevant statistics for each set. The unbalanced distribution of
the template frequency across the datasets is noteworthy. Further details about
the SciQA dataset and its construction are available in [2].

Table 1. For the training, validation, and test splits of the SciQA dataset, we show from
the left to the right, respectively, the number of human-generated questions, the number
of automatically generated questions, the percentage of human-generated questions
(H), and the percentage of automatically generated questions for each template Ti.

#Hum.
Gen.

#Aut.
Gen.

H T1 T2 T3 T4 T5 T6 T7 T8

Training 66 1729 3.7% 13.5% 13.3% 12.9% 13.3% 18.1% 2.7% 22.3% 0.3%

Validation 13 244 5.1% 14.0% 15.6% 14.8% 9.7% 16.3% 3.5% 21.0% 0%

Test 21 492 4.1% 12.5% 12.7% 14.2% 15.4% 18.5% 2.9% 19.5% 0.2%

3.2 Approaches

We employed four LLMs in our experiments: i) T5-base [33], ii) GPT-2-large [32],
iii) Dolly-v2-3b [15], and iv) GPT-3.5 Turbo [9]. These models are all based
on the transformer architecture, which leverages the attention mechanism to
learn how words and sentences relate to each other [38]. We chose these models
due to their significant variability in dimension (220M to 175B parameters)
and structure (both encoder-decoder and decoder-only), enabling us to evaluate
various options on the benchmark. In the following, we will briefly illustrate their
main characteristics.

The T5-base model features an encoder-decoder structure with 220 mil-
lion parameters and a context capacity of 512 tokens. It was trained on the C4
dataset, a vast collection of text totaling around 750 GB of web pages. The
model is trained using a mask-filling task, where 15% of the tokens are ran-
domly masked. The GPT-2-large model uses a decoder-only architecture with
774 million parameters. It is capable of handling a maximum of 1024 tokens
encompassing both input and output. It was trained on the WebText dataset,
which includes approximately 40 GB of text sourced from 45 million web pages.
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The Dolly-v2-3b is a decoder architecture with 2.8 billion parameters and a to-
ken context capacity of 2048. This model was developed by Databricks through
the fine-tuning of EleutherAI’s Pythia-12b9. Specifically, Dolly-v2-3b under-
went fine-tuning using a dataset comprising approximately 15,000 instruction-
response pairs. Finally, the GPT-3.5 Turbo model features a decoder-only
architecture with 175 billion parameters and supports a context of up to 4,096
tokens. This model builds upon the architecture and pre-training data of GPT-
3, having been trained on roughly 45 terabytes of text from diverse sources,
including books, websites, social media, and news articles. GPT-3.5 Turbo un-
derwent further fine-tuning with data and tasks pertinent to chat applications,
covering areas like dialogues, question-and-answer sessions, command-response
interactions, and code generation and execution.

4 Methodology

The primary objective of the study presented in this paper was to evaluate the
performance of various types of LLMs on the Sci-QA datasets when applying
common optimization techniques, such as few-shot learning and fine-tuning. To
achieve this, we methodically conducted experiments using 7 distinct few-shot
learning approaches as well as fine-tuning. We omitted certain experiments that
were either unfeasible due to the context window limitations of some language
models or too demanding computationally, specifically the fine-tuning of GPT-
3.5 and Dolly. We also conducted an error analysis (reported in Section 6) to
determine the strengths and weaknesses of the leading models. Contrary to other
studies [20,37,31], we did not apply any specialized adjustments to improve the
performance of these methods for this specific dataset. This section details the
experiments, along with the metrics and setup utilised in our study.

4.1 Experiments

We focused on three approaches for optimizing the LLMs: fine-tuning (FT), zero-
shot learning (ZSL), and few-shot learning (FSL). For the FT, we fine-tuned the
model on the training set before applying it to the test set. For the ZSL, the test
set was processed directly using a basic prompt without any examples. Specifi-
cally, we tried for each model different types of prompts, ultimately selecting the
most effective prompt for each model based on performance. Finally, for the FSL,
the prompt was enhanced by providing a number S of samples extracted from
the training set. Given a question of the test set, we evaluated seven methods
from the literature to select the most relevant samples for each question:

– 1) Random. S samples are randomly chosen for each test set element.
– 2) Similarity [28]. The samples are ranked in descending order based on

their semantic similarity to the question associated with the corresponding
test set element, and the top S samples are chosen.

9 Pythia-12b - https://huggingface.co/EleutherAI/pythia-12b

https://huggingface.co/EleutherAI/pythia-12b
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– Diversity of template [26].

• 3) Test A (All diverse templates): The samples are arranged in a de-
scending sequence according to their semantic similarity to the question.
The top S samples, using all different templates, are selected.

• 4) Test B (Same template for all): The samples are arranged in a de-
scending sequence according to their semantic similarity to the question.
Subsequently, the top S samples that utilize the same template as the
first sample are selected.

– Entropy [19]. We implemented three different techniques derived from [19].
For each template, we first select the 8 shortest (in terms of string size)
samples of the training set and then:

• 5) Same Templ : We select the most similar question in the training set
and identify its template. Next, we select the sample using the same
template from the set of 8 samples;

• 6) Ran Templ : We select a random sample from the set of 8 samples;
• 7) Low Perp: We generate the SPARQL query for each of the 8 input

templates and then compute the perplexity for each of them. We then
select the sample which produced the lowest perplexity.

In the following, we will illustrate the experiments conducted on the four
models: T5-base, GPT-2, Dolly-v2-3b, and GPT-3.5-Turbo.

T5-base model. The T5-base model underwent only fine-tuning. ZSL and FSL
were not applicable due to the limited size of the prompt for this model and
its pre-training on specific tasks, such as translating from English to German
or summarizing text. Consequently, when prompted for English to SPARQL
translation tasks, the model tended to provide a German translation of the
question instead. In the FT process, the T5 model was assigned the task of
translating a specified English natural language question into a SPARQL query.
The prefix used for this purpose was “Translate English to SPARQL:”.

The model was fine-tuned with 1,795 labeled samples from the training set
over 20 epochs. Each sample consisted of a short prefix and a natural language
question, serving as the input request to the model, and was paired with the
corresponding SPARQL query, which formed the expected response. Example 4
illustrates the type of data utilized in the fine-tuning process of the T5-base
model.

GPT-2-large model. The primary limitation of the GPT-2 model was its re-
stricted context size, which constrained the use of lengthy prompts and multiple
samples in few-shot learning (FSL). Despite this limitation, we successfully con-
ducted the full suite of experiments. Specifically, we performed the following
experiments:

– ZSL, using the prompt: “input (English text): [nl question] \n output (Sparql
query):”.
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– FSL with 1, 2, and 3 samples, due to the 1024 token context restriction,
which did not permit the inclusion of more samples. In the following, we
report an example using 1-short learning:
“input (English text): [the sample question in natural language]”
“output (Sparql query): [the sample SPARQL query]”
“input (English text): [the question in natural language of the underlying test
set sample]”
“output (SPARQL query):”
We tried all the methods described in the previous section (similarity, diver-
sity, and entropy) to select relevant samples.

– FT: The GPT-2-large model was fine-tuned using a text file containing
all question and query pairs from the training set. The special token
< |endoftext| > was inserted before each pair, serving as a signal for the
model to cease output generation. The fine-tuning process was carried out
over 20 epochs.

Dolly-v2-3b model. Due to the substantial dimensions of the Dolly model,
fine-tuning posed significant challenges. Consequently, we focused on ZSL and
FSL. Specifically, we performed the following experiments:

– ZSL, using the prompt: “Translate to a SPARQL query the following English
question:”.

– FSL: We utilized 1, 3, 5, and 7 examples for few-shot learning. The model’s
token limit of 2,048 restricted our input to a maximum of seven samples. We
employed the same prompt format as used with the GPT-2 model. Similar
to the previous approach, we applied the full range of previously discussed
metrics to select various samples for testing.

GPT-3.5-Turbo. Similarly to Dolly, fine-tuning was potentially resource-
intensive due to the model’s large size. Therefore, we concentrated on ZSL and
FSL instead. In summary, we performed the following experiments:

– ZSL, using the prompt: “What is the SPARQL query for:”.
– FSL: To ensure comparability with the other models, we conducted experi-

ments using 1, 3, 5, and 7 samples. We applied the complete set of method-
ologies for sample selection, with one exception. We did not test the Entropy
- Low Perp methodology because it was not possible to compute the per-
plexity with OpenAI API. The samples were provided using the following
template:
“input (English text): [the sample question in natural language]”
“output (SPARQL query): [the sample SPARQL query]”
“What is the SPARQL query for: [the question in natural language]”

4.2 Experimental Setup

We adopted an extensive set of metrics for evaluating the performance of the
models over SciQA: Precision, Recall, F1 Score, Bleu 4, Bleu Cumulative, Rouge
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1, and Rouge 2. The precision is calculated as the ratio of common tokens to
the total number of tokens in the predicted output. Similarly, recall is computed
by dividing the number of common tokens by the total number of tokens in
the ground truth. The F1-score is computed as 2 × prec×rec

prec+rec . The BLEU score
evaluates the quality of predicted text, referred to as the candidate, by comparing
it to a set of references. Representing a precision-based measure, the BLEU score
ranges from 0 to 1, with a higher value indicating better prediction quality.
A value above 0.3 is generally considered a good score. Cumulative BLEU is
determined by adding the n-gram accuracy scores from all reference translations
and then taking the geometric mean. Finally, Rouge-n measures the number
of matching n-grams between the model-generated text and a human-produced
reference. We refer to Chauhan and Daniel [13] for a comprehensive review of
these metrics.

The setup we have used for the approaches is the following. T5-base
has been first fine-tuned using HuggingFace Seq2SeqTrainer10 with the fol-
lowing parameters: learning rate=2e-5, weight decay=0.01, fp16=True. Then,
we used the method generate of the class AutoModelForSeq2SeqLM11 from
the Transformers12 library with the following setting: max new tokens=512,
do sample=True, top k=30, top p=0.95. GPT-2-large was fine-tuned using Hug-
gingFace Trainer13 using all the default parameters. GPT-2-large was utilized
through the pipeline14 abstraction from the Transformers12 library and set-
ting the following parameters: task=text-generation, max new tokens=400, re-
turn full text=False. Dolly-v2-3b was also employed using the pipeline abstrac-
tion from the Transformers12 library and the following parameters: torch dtype-
=torch.bfloat16, trust remote code=True. Finally, GPT-3.5 Turbo was used
through the OPENAI API15 via the create method of the class ChatComple-
tion16 from the openai17 Python library. The parameters were set as follows:
system role: “You are a translator from natural language to SPARQL using the
provided examples.”, temperature=0.5, top p=0.95, frequency penalty=0, pres-
ence penalty=0, stop=None, timeout=30.

10 Seq2SeqTrainer - https://huggingface.co/docs/transformers/v4.35.1/en/

main_classes/trainer#transformers.Seq2SeqTrainer
11 AutoModelForSeq2SeqLM - https://huggingface.co/docs/transformers/v4.35.

1/en/model_doc/auto#transformers.AutoModelForSeq2SeqLM
12 Transformers - https://huggingface.co/docs/transformers/v4.35.1/en/index
13 Trainer - https://huggingface.co/docs/transformers/v4.35.1/en/main_

classes/trainer
14 Pipeline class - https://huggingface.co/docs/transformers/v4.35.1/en/main_

classes/pipelines
15 OPENAI API - https://openai.com/blog/openai-api
16 ChatCompletion - https://platform.openai.com/docs/guides/

text-generation/chat-completions-api
17 OpenAI Libraries - https://platform.openai.com/docs/libraries

https://huggingface.co/docs/transformers/v4.35.1/en/main_classes/trainer#transformers.Seq2SeqTrainer
https://huggingface.co/docs/transformers/v4.35.1/en/main_classes/trainer#transformers.Seq2SeqTrainer
https://huggingface.co/docs/transformers/v4.35.1/en/model_doc/auto#transformers.AutoModelForSeq2SeqLM
https://huggingface.co/docs/transformers/v4.35.1/en/model_doc/auto#transformers.AutoModelForSeq2SeqLM
https://huggingface.co/docs/transformers/v4.35.1/en/index
https://huggingface.co/docs/transformers/v4.35.1/en/main_classes/trainer
https://huggingface.co/docs/transformers/v4.35.1/en/main_classes/trainer
https://huggingface.co/docs/transformers/v4.35.1/en/main_classes/pipelines
https://huggingface.co/docs/transformers/v4.35.1/en/main_classes/pipelines
https://openai.com/blog/openai-api
https://platform.openai.com/docs/guides/text-generation/chat-completions-api
https://platform.openai.com/docs/guides/text-generation/chat-completions-api
https://platform.openai.com/docs/libraries
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5 Results and Discussion

Tables 2, 3, 4, and 5 report the complete set of experiments on the four models,
covering all the metrics introduced in Section 4.2. Table 6 presents a compara-
tive summary of each configuration, focusing specifically on F1-scores and exact
matches.

For the sake of space, we will primarily focus on each model’s top perfor-
mance. The highest F1 score was achieved by the fine-tuned T5 model, with a
score of 0.9751. This was closely followed by GPT-3.5, which attained a score
of 0.9736 using similarity and a 7-sample few-shot approach, and the fine-tuned
GPT-2 (0.9669). Dolly’s best performance, yielded using a 1-sample few-shot
method with the sample selected via similarity, resulted in a score of 0.8792.
Although this is the lowest among the compared models, it is still fairly good.

Table 2. T5-base model - Performance when applying the fine-tuning strategy.

Strat. Prec. Rec.
F1
Score

Blue 4 Bleu C Rouge 1 Rouge 2
Exact
matches

FT 0.9767 0.9760 0.9751 0.9597 0.9631 0.9790 0.9683 483

Table 3. GPT2-large model - Performance based on the strategy (Strat.) and the
criteria for FSL sample selection (C): Random, Similarity, Diversity, Entropy. S is the
number of samples. In bold the best results for each metric.

Strat. C Test name S Prec. Rec.
F1
Score

Blue 4 Bleu C Rouge 1 Rouge 2
Exact
matches

FT 0.9693 0.9669 0.9669 0.9462 0.9504 0.9708 0.9580 430

ZSL 0.0464 0.1579 0.0653 0.0004 0.0009 0.0932 0.0087 0

FSL

R
a
n
d
. 1 0.1119 0.3001 0.1499 0.0191 0.02950 0.1826 0.0692 0

2 0.1230 0.2968 0.1580 0.0255 0.0372 0.1976 0.0807 0
3 0.1336 0.3195 0.1730 0.0303 0.0449 0.2287 0.1003 0

S
im

il
. 1 0.1477 0.4877 0.2076 0.0685 0.0822 0.2535 0.1640 0

2 0.2054 0.5112 0.2719 0.1205 0.1355 0.3237 0.2454 1
3 0.2366 0.5692 0.3107 0.1502 0.1670 0.3767 0.3077 2

D
iv
e. Test A 3 0.1680 0.4422 0.2215 0.0519 0.0721 0.2879 0.1573 0

Test B 3 0.2205 0.5636 0.2988 0.1496 0.1635 0.3555 0.2926 1

E
n
tr
o
. Same Templ 1 0.1567 0.3903 0.2029 0.0541 0.0696 0.2383 0.1373 0

Ran Templ 1 0.1105 0.2778 0.1421 0.0180 0.0280 0.1798 0.0675 0
Low Perp 1 0.2408 0.4360 0.2788 0.0924 0.1263 0.3427 0.2302 0

The scenario is similar when considering exact matches. Once again, the
top three performing approaches are the fine-tuned T5 model (scoring 483/513,
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Table 4. Dolly-v2-3b model - Performance based on the strategy (Strat.) and the
criteria for FSL sample selection (C): Random, Similarity, Diversity, Entropy. S is the
number of samples. In bold the best results for each metric.

Strat. C Test name S Prec. Rec.
F1
Score

Blue 4 Bleu C Rouge 1 Rouge 2
Exact
matches

ZSL 0.1911 0.0993 0.1087 0.0033 0.0062 0.1734 0.0358 0

FSL

R
a
n
d
o
m

1 0.5976 0.5973 0.5659 0.2799 0.3456 0.6269 0.4559 27
3 0.5830 0.6676 0.5900 0.3484 0.4038 0.6435 0.5131 31
5 0.6075 0.7147 0.6242 0.3934 0.4450 0.6847 0.5575 51
7 0.6358 0.7423 0.6576 0.4460 0.4947 0.7153 0.6001 69

S
im

il
a
ri
ty 1 0.8742 0.9088 0.8792 0.7728 0.8015 0.8861 0.8494 167

3 0.7979 0.9163 0.8304 0.7204 0.7432 0.8775 0.8470 182
5 0.7845 0.9238 0.8242 0.7102 0.7322 0.8711 0.8407 180
7 0.7681 0.9057 0.8052 0.6911 0.7113 0.8515 0.8215 181

D
iv
er
si
ty

Test A 3 0.6621 0.8240 0.7000 0.4587 0.5138 0.7766 0.6565 43
5 0.6350 0.8151 0.6825 0.4329 0.4912 0.7702 0.6327 39
7 0.6316 0.7941 0.6729 0.4246 0.4836 0.7529 0.6116 46

Test B 3 0.7623 0.9068 0.8025 0.6926 0.7139 0.8533 0.8254 171
5 0.7793 0.9223 0.8181 0.7148 0.7346 0.8647 0.8411 201
7 0.7961 0.9122 0.8261 0.7279 0.7456 0.8647 0.8398 212

E
n
tr
. Same Templ 1 0.4866 0.8089 0.5734 0.3662 0.4005 0.5741 0.5474 2

Ran Templ 1 0.3789 0.6107 0.4402 0.1604 0.2155 0.4811 0.3288 0
Low Perp 1 0.5854 0.8647 0.6757 0.4499 0.5013 0.7262 0.6201 1

Table 5. GPT-3.5-Turbo model - performance based on the strategy (Strat.) and the
criteria for FSL sample selection (C): Random, Similarity, Diversity, Entropy. S is the
number of samples. In bold the best results for each metric.

Strat. C Test name S Prec. Rec.
F1
Score

Blue 4 Bleu C Rouge 1 Rouge 2
Exact
matches

ZSL 0.4963 0.1931 0.2632 0.0039 0.0088 0.4010 0.1019 0

FSL

R
a
n
d
o
m

1 0.8162 0.6962 0.7362 0.3954 0.4828 0.8194 0.6107 45
3 0.8707 0.8052 0.8259 0.5914 0.6558 0.8817 0.7543 113
5 0.9024 0.8499 0.8675 0.6813 0.7343 0.9073 0.8141 165
7 0.9226 0.8726 0.8905 0.7356 0.7799 0.9227 0.8476 189

S
im

il
a
ri
ty 1 0.9509 0.9305 0.9368 0.8655 0.8833 0.9505 0.9137 356

3 0.9730 0.9635 0.9667 0.9378 0.9439 0.9750 0.9558 451
5 0.9759 0.9685 0.9709 0.9481 0.9521 0.9772 0.9609 464
7 0.9768 0.9727 0.9736 0.9534 0.9571 0.9788 0.9638 475

D
iv
er
si
ty

Test A 3 0.9693 0.9156 0.9378 0.8613 0.8784 0.9619 0.9232 315
5 0.9730 0.9209 0.9428 0.8699 0.8875 0.9642 0.9290 328
7 0.9688 0.9158 0.9375 0.8599 0.8783 0.9610 0.9230 313

Test B 3 0.9678 0.9492 0.9561 0.9057 0.9181 0.9672 0.9391 412
5 0.9683 0.9502 0.9566 0.9076 0.9192 0.9681 0.9401 417
7 0.9673 0.9501 0.9562 0.9061 0.9180 0.9671 0.9386 422

E
n
t. Same Templ 1 0.9303 0.8781 0.8988 0.7759 0.8119 0.9252 0.8631 205

Ran Templ 1 0.8268 0.6345 0.7016 0.3222 0.4070 0.7946 0.5651 26
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94.1%), GPT-3.5 employing the similarity-based 7-sample few-shot approach
(92.6%), and the fine-tuned GPT-2 (83.8%). However, in contrast to the previ-
ous findings, the performance of the Dolly model is consistently subpar across
all configurations, with the best outcome achieved using a 7-sample few-shot
approach (Diversity - Test B, always using the same template), yielding a score
of only 41.3% (212/513). The low performance of Dolly may be due to its ex-
clusive reliance on FSL and ZST, as it has not undergone fine-tuning due to its
significant size. The fact that the best version of Dolly uses Diversity - Test B
may depend on the fact that using a substantial number of examples following
a consistent template enables Dolly to produce comparatively better queries.

When considering all the other metrics introduced in Section 4.2 and reported
in Tables 2-5, the trends are very similar. The top three methods in terms of
performance for Rouge 1, Rouge 2, Bleu 4, and Bleu C are again the fine-tuned
T5, GPT 3.5 with 7-sample few-shot, and the fine-tuned GPT-2.

These results reveal several noteworthy insights. First, despite the challenges
presented by the SciQA benchmark and the generally low performance in zero-
shot learning observed among all models (no exact matches and <26% F1), the
highest-performing solutions that employed fine-tuning and few-shot learning
exhibited excellent results. This suggests that as LLMs advance and our under-
standing of them deepens, more challenging benchmarks may be soon required.

Second, the T5 model, although the smallest model by a large margin (220M
parameters), surpassed all the larger models and even robust commercial solu-
tions like GPT-3.5 (175B) when fine-tuned with relevant data. This supports
the idea that appropriately tailored datasets can enable the development of ef-
ficient, low-resource models that perform comparably to more computationally
intensive options. The financial and sustainability implications of this finding
warrant further exploration.

Third, our analysis identified semantic similarity as the most effective ap-
proach for selecting samples in few-shot learning tasks. This method consistently
produced the highest performance across all models. However, it was observed
that different models react differently to changes in sample size. For example,
GPT 3.5 showed improved performance with larger sample sizes when using
similarity-based selection. In contrast, Dolly’s performance declined, suggesting
that an increase in examples might confuse this model. These phenomena merit
additional investigation in future studies.

6 Error Analysis

We performed a comprehensive analysis of erroneous queries, defined as those
not matching the expected response. The analysis focused on the errors produced
by T5-base (30 errors), which was the top-performing model, and GPT-3.5 (38
errors), which was the second-best performer.

We identified five unique error categories. Table 7 details the definitions of
these categories and the respective proportions of erroneous queries for both T5
and GPT-3.5. Each query can be associated with multiple categories due to the
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Table 6. Summary of F1-scores and exact matches (in parenthesis) based on the
different strategies (Strat.), and the various Criteria (C): Random, Similarity, Diversity,
Entropy. S is the number of samples. In bold the best results for each model.

Strat. C Test name S T5-base GPT2-large Dolly-v2-3b GPT-3.5-turbo

ZSL 0.0653 (0) 0.1087 (0) 0.2632 (0)

FT 0.9751 (483) 0.9669 (430)

FSL

R
a
n
d
o
m

1 0.2005 (0) 0.5659 (27) 0.7362 (45)
3 0.2187 (0) 0.5900 (31) 0.8259 (113)
5 0.6242 (51) 0.8675 (165)
7 0.6576 (69) 0.8905 (189)

S
im

il
a
ri
ty 1 0.2718 (0) 0.8792 (167) 0.9368 (356)

3 0.4051 (2) 0.8304 (182) 0.9667 (451)
5 0.8242 (180) 0.9709 (464)
7 0.8052 (181) 0.9736 (475)

D
iv
er
si
ty

Test A 3 0.2215 (0) 0.7000 (43) 0.9378 (315)
5 0.6525 (39) 0.9428 (328)
7 0.6729 (46) 0.9375 (313)

Test B 3 0.2988 (1) 0.8025 (171) 0.9561 (412)
5 0.8181 (201) 0.9566 (417)
7 0.8261 (212) 0.9562 (422)

E
n
t.

Same Templ 1 0.2029 (0) 0.5734 (2) 0.8988 (205)
Ran Templ 1 0.1421 (0) 0.4402 (0) 0.7016 (26)
Low Perp 1 0.2788 (0) 0.6757 (1)

presence of more than one type of error. Therefore, the sum of all these categories
does not necessarily equal to 100%.

The comparison of incorrect results between T5 and GPT-3.5, reveals a total
of 21 overlapping queries. They included 10 instances of error type 1 (misspelled
entity), 11 of type 2 (wrong entity type), 9 of error type 3 (wrong predicate), and
4 of error type 5 (semantic error). Despite these overlaps, T5 and GPT-3.5 ex-
hibit significant differences across several categories of errors, underscoring their
distinct strengths and weaknesses. Indeed, they only exhibit similar behavior
with respect to the misspelled entity category (60.0% and 60.5%, respectively),
which explains the high number of errors of type 1 in the overlapping mistakes.
Both models occasionally alter the names of entities, often using synonyms. An
example of this is provided in Example 3, where the entity linear-chain CRFs
was modified to label-chain CRFs.

The primary issue with T5 pertains to syntactic errors, accounting for 40.0%
of errors compared to only 5.2% in GPT-3.5. This suggests that T5 has a rela-
tively weaker grasp of SPARQL syntax compared to GPT-3.5. Example 4 reports
a typical case in which T5 generate a syntactically incorrect query. In all other
error categories, T5 demonstrates notably fewer mistakes than GPT-3.5.

GPT-3.5 is characterized by a range of issues, most notably a semantic er-
ror rate that is more than double that of T5 (57.8% vs 26.6%). This indicates
that while GPT-3.5 typically generates syntactically accurate queries, it tends to
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misinterpret their meaning more often than T5. Additionally, GPT-3.5 is more
prone to incorrectly generating the wrong entity type or predicate. These prob-
lems may partly stem from the inclusion of SPARQL queries from Wikidata and
DBpedia in its training data. Consequently, instead of accurately translating
queries, GPT-3.5 may hallucinate and erroneously insert SPARQL query frag-
ments that refer to Wikidata and other large knowledge graphs. Example 5 shows
a typical case in which GPT-3.5 hallucinates a fictitious predicate (orkgp:P2067),
probably influenced by the Wikidata predicate Property:P2067. This analysis un-
derscores the challenges LLMs face when attempting to use specialized domain
ontologies, which may diverge from standard predicate and type conventions.
Consequently, a less complex and more straightforward model, such as T5, may
at times produce better results.

Table 7. Categories of errors and their frequencies for GPT-3.5 and T5.

Error Category Category Definition GPT-3.5 T5

(1) Misspelled entity The query misspells an entity name (e.g,
“robotic navigation” instead of “robot navi-
gation”).

60.5% 60.0%

(2) Wrong entity type The query uses an entity of a different type
(e.g., the query searching an entity of type
Energy Source instead of one of type Paper).

52.6% 36.6%

(3) Wrong predicate The query uses an incorrect predicate in the
query (e.g., orkgp:P7046 has been replaced
with orkgp:HAS METHOD).

76.3% 36.6%

(4) SPARQL syntactic
error

The query cannot be syntactically parsed by
a SPARQL compiler.

5.2% 40.0%

(5) Semantic error The query does not reflect the meaning of
the question.

57.8% 26.6%

7 Limitations

This paper focuses on the SciQA benchmark, since it is meant to be a chal-
lenge for next-generation QA systems. However, when analyzing the findings, it
is important to consider some limitations and factors regarding the general ap-
plicability of the proposed solutions. First, SciQA includes numerous questions
that have been automatically generated from initial seed questions. Despite the
complexity of these queries, LLMs may be capable of identifying the some in-
herent patterns. Therefore, the results shown here do not necessarily carry over
to other benchmarks, which were entirely handcrafted, e.g., [24] indicates that
semantic parsing is still a challenging task for LLMs. Additionally, success on



Large Language Models for Scientific Question Answering 15

the SciQA is heavily reliant on the appropriate application of literals, unlike
other QA benchmarks where the accuracy of entities plays a more crucial role.
While SciQA was just recently released, we would also like to point out that the
precise training schedules for OpenAI models are unknown. Therefore, there ex-
ists a small yet plausible chance that the GPT-3.5 model may have encountered
information from the SciQA benchmark during its training phase.

A further limitation is that we focused on query similarity metrics on the gen-
erated query string as opposed to execution metrics for computational reasons.
For example, for our exact match metric, there is a risk that an LLM-generated
query is rated as incorrect even if retrieves the correct results and the query
formulation is aligned with the intent of the question, i.e., we could underesti-
mate model performance. However, the manual examination of the sample of 68
errors produced by T5 and GPT-3.5 reported in Section 6 found that all queries
marked as erroneous would not have yielded the correct results upon execution.

8 Conclusions

This paper presented an in-depth examination of the performance of LLMs on
the SciQA benchmark. We evaluated four distinct language models, employ-
ing three methodologies: zero-shot learning, few-shot learning, and fine-tuning.
Additionally, we explored seven different strategies for choosing examples in few-
shot learning. Our findings demonstrate that optimizing LLMS with appropri-
ate prompting and fine-tuning techniques produces outstanding results on this
benchmark, with the best model yielding a >94.1% exact query match accuracy
and >97.5% F1-score. This performance highlights the potential need for more
challenging benchmarks in this space.

Interestingly, the most effective results across nearly all metrics were achieved
by the fine-tuned T5 model, which is relatively small (220M parameters), fol-
lowed by GPT-3.5 using a seven-sample few-shot, and the fine-tuned GPT-2.
This suggests that low-resource models, if carefully fine-tuned, can rival the per-
formance of larger, more resource-intensive models even on a complex task such
as scientific question answering. Finally, the analysis shows that semantic simi-
larity is the most effective method for sample selection in few-shot learning for
this specific task.

In our future research, we plan to broaden our examination by conducting
comprehensive experiments on the capability of LLMs to perform knowledge
graph question answering across various domains. We are also investigating the
potential of LLMs in performing related tasks, such as generating scientific hy-
potheses [8], classifying research articles [11], recommending citations [10], and
producing literature reviews [7]. Finally, we plan to apply the valuable insights
gained from this study to develop a more challenging benchmark for scientific
question answering. Specifically, we plan to produce a new resource based on
large-scale knowledge graphs in this space such as the Academia/Industry Dy-
nAmics Knowledge Graph (AIDA-KG) [1] and the Computer Science Knowledge
Graph (CS-KG) [16].
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A Appendix - Examples

Example 1Question: What are the titles and IDs of research papers that include
a benchmark for the DDI extraction 2013 corpus dataset?

SELECT DISTINCT ?paper ?paper_lbl
WHERE { ?dataset a orkgc:Dataset; rdfs:label ?dataset_lbl.

FILTER (str(?dataset_lbl) = ‘‘DDI extraction 2013 corpus’’)
?benchmark orkgp:HAS_DATASET ?dataset.
?cont orkgp:HAS_BENCHMARK ?benchmark.
?paper orkgp:P31 ?cont; rdfs:label ?paper_lbl.

}

Example 2 Type of data used in the fine-tuning process of the T5-base model.

Request:
“Translate English to SPARQL: Which model has achieved the highest Accuracy score
on the ARC (Challenge) benchmark dataset?”
Expected output:

SELECT DISTINCT ?model ?model_lbl
WHERE { ?metric a orkgc:Metric; rdfs:label ?metric_lbl.
FILTER (str( ?metric_lbl) = ‘‘Accuracy") { SELECT ?model ?model_lbl
WHERE { ?dataset a orkgc:Dataset; rdfs:label ?dataset_lbl.
FILTER (str( ?dataset_lbl) = ‘‘ARC (Challenge)")
?benchmark orkgp:HAS_DATASET ?dataset; orkgp:HAS_EVALUATION ?eval.
?eval orkgp:HAS_VALUE ?value; orkgp:HAS_METRIC ?metric.
?cont orkgp:HAS_BENCHMARK ?benchmark; orkgp:HAS_MODEL ?model.
?model rdfs:label ?model_lbl. } ORDER BY DESC( ?value) LIMIT 1 } }

Example 3 Example of misspelled entity generated by T5. In blue the original
entity and in red the misspelled one. Question: List the code links in papers that
use the linear-chain CRFs model in any benchmark?

Original query:

SELECT DISTINCT ?code
WHERE {

?model a orkgc:Model;
rdfs:label ?model_lbl.

FILTER (str( ?model_lbl) =
"linear-chain CRFs")
?benchmark orkgp:HAS_DATASET ?dataset.
?cont orkgp:HAS_BENCHMARK ?benchmark.
?cont orkgp:HAS_MODEL ?model;

orkgp:HAS_SOURCE_CODE ?code.
}

Generated output:

SELECT DISTINCT ?code
WHERE {

?model a orkgc:Model;
rdfs:label ?model_lbl.

FILTER (str( ?model_lbl) =
"label-chain CRFs")
?benchmark orkgp:HAS_DATASET ?dataset.
?cont orkgp:HAS_BENCHMARK ?benchmark.
?cont orkgp:HAS_MODEL ?model;

orkgp:HAS_SOURCE_CODE ?code.
}
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Example 4 Example of SPARQL syntactic error generated by T5. In red the
unmatching part. Question: What is Raman spectroscopy?

Original query:

SELECT ?definitions
WHERE {

?terms orkgp:P24009 ?definitions.
?terms rdfs:label ?terms_labels.
FILTER(REGEX( ?terms_labels,
"Raman spectroscopy"))

}

Generated output:

SELECT ?rmdfs:label ?rmdfs:label
?rmdfs:label ?rmdfs:label ?rmdfs:label
?rmdfs:label ?rmdfs:label ?rmdfs:label
?rmdfs:label ?rmdfs:label ?rmdfs:label
?rmdfs:label. }

Example 5 Example of wrong predicate error generated by GPT-3.5. In red the
hallucinated predicate. Question: What quantity of iron oxide was discovered on
Elorza crater?
Original query:

SELECT ?properties_values,
?property_description

WHERE {
?papers rdf:type orkgc:Paper.
?papers rdfs:label ?papers_labels.
?papers orkgp:P31 ?contrib.
?contrib ?properties ?properties_values.
?properties rdfs:label ?properties_labels.
?properties orkgp:description ?property_description.
FILTER(REGEX( ?properties_labels, "FeO"))
FILTER(REGEX(?papers_labels, "Elorza crater", "i"))

}

Generated output:

SELECT ?quantity
WHERE {

?crater rdf:type orkgc:Crater.
?crater rdfs:label "Elorza crater".
?crater orkgp:P31 ?iron_oxide_discoveries.
?iron_oxide_discoveries orkgp:P2067 ?quantity.

}
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