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Abstract. Recent advancements in contrastive learning have revolutionized self-
supervised representation learning and achieved state-of-the-art performance on
benchmark tasks. While most existing methods focus on applying contrastive
learning on input data modalities like images, natural language sentences, or net-
works, they overlook the potential of utilizing output from previously trained en-
coders. In this paper, we introduce SIMSKIP, a novel contrastive learning frame-
work that specifically refines the input embeddings for downstream tasks. Unlike
traditional unsupervised learning approaches, SIMSKIP takes advantage of the
output embedding of encoder models as its input. Through theoretical analysis,
we provide evidence that applying SIMSKIP does not lead to larger upper bounds
on downstream task errors than that of the original embedding which is SIM-
SKIP’s input. Experiment results on various open datasets demonstrate that the
embedding by SIMSKIP improves the performance on downstream tasks.

1 Introduction

Embedding symbolic data such as text, graphs, and multi-relational data has become a
key approach in machine learning and AI [24]. The learned embeddings can be uti-
lized in various applications. For instance, in NLP, word embeddings generated by
WORD2VEC [23] or BERT [4] have been employed in tasks like question answer-
ing and machine translation. In the field of graph learning, embeddings of graphs like
NODE2VEC [7] and DEEPWALK [28] have been used for node classification and link
prediction in social networks. Similarly, in computer vision, image embeddings such as
ResNet [9] can be used for image classification.

Despite the progress in representation learning, learning effective embeddings re-
mains a challenging problem. Deep learning models often require a large amount of
labeled training data, which can be costly and limit their applicability. Additionally, the
learned embeddings often perform well on one task but not on others.

Contrastive learning has the advantage of being able to learn representations without
label information, thus saving a significant amount of human effort and resources that
would have been used for data labeling. The fundamental idea of contrastive learning is
to bring together an anchor and a “positive” sample in the embedding space while push-
ing apart the anchor from many “negative” samples [3]. As there are no labels available,
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a positive pair often consists of data augmentations of the sample, and negative pairs are
formed by the anchor and randomly chosen samples from the minibatch [3]. Although
the concept is simple, recent research has shown that contrastive learning methods can
achieve comparable results to supervised methods [13,29].

Given the success of contrastive learning, a logical question to ask is whether using
the output of another embedding model as input to contrastive learning can further re-
fine the embedding space and make it perform better for downstream tasks. This is the
question we aim to answer in this paper. We propose a new approach, called SIMSKIP,
that takes the output embedding of another model as input and applies contrastive learn-
ing on it. Our proposed method aims to fine-tune the input embedding space, making it
more robust for downstream tasks. We theoretically prove that after applying SIMSKIP
on the input embedding space, for a downstream task, the error upper bound of the new
learned fine-tuned embedding will not be larger than that of the original embedding
space. We conduct extensive experiments on various datasets and downstream tasks to
evaluate the performance of our proposed approach and compare it with other state-
of-the-art methods. The results show that the proposed SIMSKIP can refine the input
embedding space and achieve better performance on downstream tasks.

In summary, the main contributions of this paper are:

– Problem Definition. To the best of our knowledge, we are the first to propose and
investigate the use of contrastive learning to improve the robustness of embedding
spaces.

– Algorithm We propose a skip-connection-based contrastive learning model, SIM-
SKIP, and theoretically prove that it can reduce the error upper bound of down-
stream tasks.

– Empirical Evaluations. We conduct extensive experiments on several real-world
datasets and various downstream tasks. The results of our experiments demonstrate
the effectiveness of SIMSKIP.

2 Preliminaries and Problem Definition

2.1 Contrastive Learning

Contrastive learning aims to learn effective representations by pulling semantically sim-
ilar samples together and pushing dissimilar samples apart [6]. In self-supervised set-
ting as such contrastive learning, constructing positive and negative pairs from unlabeld
dataset through data augmentation is critical. For example, in visual representations,
an effective approach is to generate two augmented images from one input image and
use them as the positive pair, while other images in the same mini-batch are treated as
negative pairs of the input image. There are several different data augmentation meth-
ods such as cropping, flipping, distortion, and rotation [3]. In node representations in
graphs, one idea is to use the neighborhood of the given node as positive pairs, while
nodes that are farther away are treated as negative pairs. For graph-level representations,
operations such as node deletion and edge deletion can be used to generate positive aug-
mentations of the input graph.
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After building positive and negative pairs, neural network-based encoders are used
to learn representation vectors from augmented data examples. Various network archi-
tectures such as ResNet [3] for images and BERT [6] for text can be used. The output
representation vectors of the encoders are used as the final embedding of the input data.
To learn an effective embedding space discriminating positive and negative pairs, a sim-
pler neural network called projector is stacked on top of a encoder and the contrastive
loss is applied against the projector output. A commonly used projector is an MLP with
one or two layers, which is simple to implement.

In training, first, a random sample of N examples is taken for a mini-batch. Then,
N pairs are constructed from N samples through data augmentation, which lead 2N
examples total in the mini-batch. N augmented pair of an input data point are treated as
the positive pair in the mini-batch. For each augmented positive pair (i, j), the remain-
ing 2N−2 example are used to construct negative examples (i, k). The commonly used
contrastive learning loss is

li,j = −log
exp(sim(zi, zj)/τ)∑2N

k=1 Ik ̸=i,jexp(sim(zi, zk)/τ)
(1)

where τ is the temperature, sim is a similarity function such as the cosine similarity,
zi(= p(f(xi)) is the output of the projector p which takes the output of the encoder f
[3].

2.2 Problem Statement

In this paper, we focus on investigating whether contrastive learning can refine the em-
beddings for downstream tasks. Given an input dataset D = {di}N1 , an arbitrary em-
bedding function h(), and its output embedding X , where xi ∈ X is the embedding of
data point di (xi = h(di)), our goal is to design a new embedding function f such that
f(h(di)) performs no worse than h(di) given an arbitrary downstream task T.

3 Method

In the previous sections, we outlined the concept of unsupervised contrastive learn-
ing. In this section, we will delve into the specifics of using SIMSKIP that refines pre-
existing embeddings.

3.1 Contrastive Learning Limitation

The architecture of contrastive learning ensures that augmentations of the same data
point are close to each other in the embedding space. However, this alone does not
guarantee that the learned embeddings are suitable for downstream tasks. As shown in
Figure 1, assuming we have eight input embedding points that belong to two different
classes, red and blue. When adding Gaussian noise to the original embedding points to
create their augmentations, the augmented positive points are represented by the circles
around the points on the left side of Figure 1. When there are two different contrastive
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learning encoders, f1 and f2, they will map all augmentations of the same data point to
the embedding points close to that of the original data point in the contrastive embed-
ding space. If the two augmentations are denoted as xi1 and xi2, sim(f1(xi1), f1(xi2))
will be close to 1 (the same applies to f2). Since all the other augmentation examples
are treated as negative examples, it is clear that the contrastive loss of f1(x) will be very
similar as that of f2(x) when they map the original data points as shown in the right
side of Figure 1.

Even though the contrastive loss of f1 and f2 are very similar, the performance
of the downstream classification task may differ between the two embedding spaces.
For example, f1 separates the red and blue points into distinct clusters, which makes
it easy for the downstream classification task to accurately classify them. However, in
the embedding space created by f2, the red and blue points are mixed together, which
results in poor performance for the downstream classification task.

Fig. 1: The problem of existing unsupervised contrastive learning
.

3.2 SIMSKIP Details

Fig. 2: The Skip Connection. The picture of Adapter is from [10].

To address this problem, we introduce skip connection contrastive learning. This
method is similar in principle to ResNet [9] as illustrated in Figure 2. The idea behind
skip connections is that it retains the expressiveness of the original network. A specific
network architecture defines a class of functions F that it can represent. Suppose f

′
is

the optimal function we aim to find. If it is within F , we are in good shape. However,



Can Contrastive Learning Refine Embeddings 5

it is often the case that it is not. Therefore, our goal is to find the best approximation of
f

′
within F .
A naive way to achieve this is to increase the depth and width of the neural network.

By adding more layers and neurons, the network can represent a new class of functions
F ′, which is more expressive than F . In general, we expect that fF ′ would be better
than fF , as a more expressive function class should be able to capture more complex
patterns in the data. However, this may not be the case. In fact, increasing the depth
and width of the network can lead to a worse fF ′ , as illustrated by Figure 2 (b). In this
example, even though F6 is larger than F3, its optimal approximation is farther from
the optimal function f ′.

To solve this problem, Kaiming et al in [9] proposes to use skip-connection to
avoid the aforementioned issue from the non-nested function classes. The idea of skip-
connection is that it can create nested function classes where F1 ⊆ ... ⊆ F6 as shown
on the right of Figure 2 (b). Because the larger function classes contain the smaller
ones, it can guarantee that increasing them strictly increases the expressive power of
the network. For deep neural networks, if we can train the newly-added layer into an
identity function f(x) = x, the new model will be as effective as the original model.
As the new model may get a better solution to fit the training dataset, the added layer
might make it easier to reduce training errors.

Building on the idea of incorporating skip connections, we propose a model named
SIMSKIP that utilizes contrastive learning to refine embedding based on the original
input embedding. The architecture of SIMSKIP is illustrated in Figure 2 (c). SIMSKIP
consists of two components: a skip connection based encoder and a projector. The detail
of the encoder can be found in Figure 3.

The projector is a Multi-layer Perceptron (MLP) with one hidden layer, represented
as W2σ(W1x), where σ is a ReLU non-linearity. By incorporating skip connections, the
expressive power of the network (contrastive learning encoder) is increased. Therefore,
the new learned embedding should perform at least as well as the original embedding
in downstream tasks.

3.3 Data Augmentation

Data augmentation is commonly used in contrastive learning to generate positive sam-
ples for a given data point. However, when the input to the model is the output em-
bedding of another model, traditional data augmentation methods are not applicable.
Image-based techniques like cropping, resizing, cut-out, and color distortion, as well as
Sobel filtering, can only be applied to images [3]. Other methods such as node dele-
tion and edge deletion for graphs are also not suitable for this purpose. Designing an
effective data augmentation strategy is critical for contrastive learning methods.

Inspired by [30], in this paper, we use two types of data augmentation to embedding
output of an encoder network – masking and Gaussian noise.
A - Random Masking. Random masking is applied to the input embedding. Specif-
ically, given an input embedding ei ∈ Rd, a random vector M ∈ {0, 1}d is created
where 0 indicates that the element will be masked and 1 indicates no change. The num-
ber of 0s in M is drawn from a Bernoulli distribution B(1 − α), where α is a hyper-
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parameter. The output after applying random masking is ei ◦ M , where ◦ represents
element-wise multiplication.
B - Gaussian Noise. When adding Gaussian noise to the input embedding ei ∈ Rd, a
random vector ϵ ∼ N(0, I) is first sampled from a multi-variable Gaussian distribution,
where ϵ ∈ Rd and each element in ϵ is drawn from a Gaussian distribution with zero
mean and unit variance. The output after adding the Gaussian noise is ei + δ ◦ ϵ, where
δ is a hyper-parameter.

3.4 Theoretical proof

In this section, we theoretically demonstrate why SIMSKIP may refine it’s input embed-
ding. Here, ‘refine’ means that the embedding which SIMSKIP produces has no worse
downstream performance than that of the original embedding which is SIMSKIP’s in-
put. We initially establish the upper bound for the loss in any downstream task within
the context of contrastive unsupervised learning, as demonstrated in [31]. Then, we
prove that using a skip connection-based network as the contrastive learning encoder
can achieve a smaller or equal loss upper bound for downstream classification tasks
compared to using original input embedding directly.

A - Preliminary. Let X denote the set of all possible data points. Let f1(x) represent
an arbitrary neural network that takes x as its input. Then, a neural network with skip
connection f2 can be denoted as

f2(x) = f1(x) + x = f1(x) + fI (2)

where fI = x.
B - Downstream Task Loss for Contrastive Unsupervised Learning. In this section,
we present an upper bound for the loss of a supervised downstream task which uses
representation learned by any contrastive learning, as originally shown in [31].

In unsupervised learning, given a contrastive encoder f , the primary objective is to
make ensure that the embeddings of the positive pair (x+, x), generated by the function
f , are close to each other, while the embeddings of the negative pair (x−, x), generated
by the same function, are far away from each other. Contrastive learning assumes access
to similar data in the form of pairs (x, x+) that come from a distribution Dsim as well
as k i.i.d. negative samples x−

1 , x
−
2 , ..., x

−
k from a distribution Dneg that are presumably

unrelated to x. Learning is done over F , a class of representation functions f : X −→
Rd where f is the embedding function. The quality of the representation function f
(contrastive encoder) is evaluated by its performance on a multi-class classification task
T ∈ T using linear classification. A multi-class classifier for T ∈ T is a function g
whose output coordinates are indexed by the classes c in task T ∈ T . For example, in
SimCLR [3], the encoder is denoted as f and a linear classifier is used as the projector.
So the whole framework of SimCLR can be expressed as g(x) = wf(x). The loss
considered in [31] is the logistic loss l(v) = log2(1 +

∑
i exp(−vi)) for v ∈ Rd. Then

the supervised loss of the downstream task classifier g is

Lsup(T, g) = E[l({g(x)c − g(x)c′}c̸=c′)] (3)
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where c and c′ are different classes. For simplicity, we use Lsup(f) to denote the down-
stream loss of the model with function f which satisfies Lsup(T, g) and g(x) = wf(x).

We outline the objective of contrastive learning: k denotes number of negative sam-
ples used for training. The unsupervised loss can be defined as

Lun(f) = E[l({f(x)T (f(x+)− f(x−)}ki=1)] (4)

After training, suppose f̂ is the function which can minimizes the empirical unsuper-
vised loss and we denote its corresponding loss for supervised downstream task as
Lsup(f̂). According to the theorem 4.1 in [31], we have

Lsup(f̂) <= αLun(f) + ηGenM + ϵ (5)

where Gen is the generalization error which is defined as

GenM = O(R
√
k
Rs(F)

M
+ (R2 + logk)

√
log 1

ϵ

M
) (6)

and M is the sample size, Rs(F) is the Rademacher average of F [31], F is the function
space defined by f , and R is a constant which satisfies ||f(x)|| <= R for any x.
This shows that the supervised task loss Lsup(f̂) is bounded by the unsupervised loss,
Lun(f).
C - Skip-connection Based Model. Suppose we use neural network with skip connec-
tion (f2) to learn the contrastive embedding, according to Eq. (2), we have

Lun(f2) = E[l({f2(x)T (f2(x+)− f2(x
−)}ki=1)] (7)

= E[l({(fI(x) + f1(x))
T (fI(x

+) + f1(x
+)− fI(x

−)− f1(x
−)}ki=1)]

(8)

where l is the logistic loss. Suppose the learned f1(x) is a trivial identity matrix I.
As x is closer to x+ than to x−, fI(x)T (fI(x+) − fI(x

−)) = fI(x)
T fI(x

+) −
fI(x)

T fI(x
−) >= 0 holds. Accordingly,

Lun(f2) = Lun(fI + fI) = E[l(4{fI(x)T (fI(x+)− fI(x
−)}ki=1)]

≤ E[l({fI(x)T (fI(x+)− fI(x
−)}ki=1)] = Lun(fI)

holds because l is monotonically decreasing. This means the upper bound of skip con-
nection contrastive learning loss Lun(f2) is smaller than Lun(fI) which is the con-
trastive learning error of the original embedding. If SIMSKIP learns f1 which is not
an identity matrix through contrastive learning process, Lun(f2) is trivially less than
Lun(fI + fI), which induces that Lun(f2) ≤ Lun(fI) always holds. Therefore, the
upper bound for using skip connections for contrastive learning should be lower.

We have observed that the proposed SIMSKIP exhibits several similar properties
to Adapter [10] in that both employ skip connection as their fundamental components
as shown in Figure 2(d). However, Adapter is embedded within each layer of Trans-
former [33], while SIMSKIP is positioned outside the original model h(). Although
Adapter has been widely used in many Transformer [33] based models [4,21], no the-
oretical proof has been given thus far. In this work, we present the first theoretical
proof demonstrating why skip connection-based refinement does not degrade down-
stream tasks.
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4 Experiments

Throughout the experiments, we want to show the effectiveness of SIMSKIP through
downstream task metric improvement and its wide applicability to various pre-trained
embeddings over different modalities including shallow knowledge graph embedding,
deep graph neural network embedding, image embedding, and text embeddings. The
datasets and benchmark methods used in the study are initially described, followed by
the presentation of experimental results.

4.1 Experimental Setting

The study utilizes five datasets, as outlined below:

– The movieQA is a movie knowledge graph derived from the WikiMovies Dataset.
It includes over 40,000 triples that provide information about movies.

– The STL10 is an image dataset for image classification task. It has 10 classes and
has 500 96x96 training images along with 800 test image per class.

– The CIFAR10 is an image dataset for image classification tasks. It has 10 classes
and has 6,000 32x32 color images per class. The dataset is split into 50000 training
images and 10000 test images.

– The Cora is a graph dataset for node classification. It consists of 2,708 scientific
publications as nodes with seven classes and 5,429 citations as edges.

– The Pubmed is a graph dataset for node classification. It consists of 19,717 sci-
entific publication in Pubmed as nodes with three classes and 44,338 citations as
edges.

The following methods are employed to learn the input embedding for contrastive
learning:

– FedE [2] is a Federated Knowledge Graph embedding framework that focuses on
learning knowledge graph embeddings by aggregating locally-computed updates.
For the local Knowledge Graph embedding, we employed TransE [1]. This frame-
work includes a client for each knowledge graph and a server for coordinating
embedding aggregation.

– SimCLR [3] is a simple framework for contrastive learning of image representa-
tions. It first learns generic representations of images on an unlabeled dataset and
then can be fine-tuned with a small number of labeled images to achieve good per-
formance for a given classification task.

– GraphSAGE [8] is a general, inductive graph neural network (GNN) that leverages
node feature information (e.g., text attributes). It samples and aggregates a nodes
neighborhood’s features to generate node embeddings.

– SimCSE [6] is a self-supervised text embedding that refines any pre-training transformer-
based language models. Its main idea is to apply contrastive learning by treating
two text embeddings obtained from the same input text with different dropout as
positive pairs.
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Throughout the experiment, we adhere to the original baseline experiment settings
when running baselines. The embedding dimensions are 128 for FedE, 128 for SIM-
CLR, 128 for GraphSage, and 768 for SimCSE. As for our proposed SIMSKIP, we
explore various hyper-parameters over learning rate of 0.001, 0.0003, 000003, and
0.00001, and report its optimal performance. The encoder architecture of SIMSKIP is
shown in Figure 3. Layer 1 and layer 2 have the same structure, which contains a linear
layer, a batch norm layer, a ReLU and a dropout layer. The projector is a two-layer
feed forward network. When the dimension of the original embedding is d, the number
of parameters for the encoder is d × d/2 for layer 1, d/2 × d for layer 2, and d × d
for the linear layer. The number of parameters for the project is d × d for both layer 1
and layer 2. For data augmentation, the masking augmentation randomly masked 20%
of the vector, and Gaussian noise augmentation added noise sampled from a Gaussian
distribution with mean 0 and variance 0.13.

Fig. 3: The SimSkip Encoder. Layer 1 and Layer 2 have the same architecture.
.

4.2 SIMSKIP for Federated Knowledge Graph Embedding

This section evaluates SIMSKIP’s performance of refining the embedding learned by
federated learning. To have the federated knowledge graph learning setting, two knowl-
edge graphs are randomly sampled from the movieQA knowledge graph. FedE [2] is
used to learn the entity embeddings in a federated manner.

Table 1: Accuracy on different downstream tasks for movieQA knowledge graph

KNN
Genre

Classification
Movie

Recommendation
FedE 58.5 84.8 7.47

SIMSKIP+ mask 62.8 86.1 7.67
SIMSKIP+ gaussian 63.3 86.0 7.01

In this experiment, we use three different downstream tasks - k-nearest neighbor
same genre prediction (KNN), genre classification and movie recommendation. KNN is
that, given a query movie, take 10-nearest movies to the query movie in the embedding
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space and count how many movies in those 10 movies have the same genre as the query
movie. Genre classification downstream task predicts the genre of a movie according
to its embedding and a 3 layered MLP was employed as a downstream classfier. Movie
recommendation task recommends new movies to users according to the user’s watch-
ing history. The user’s watching history data is from Netflix dataset 3. Given a user’s
watching history V1, ..., VN in a chronological order, we treat V1, .., VN−10 as the train-
ing data, and predict 10 movies the user is most likely to watch. Then, we calculate how
many movies in the 10 predicted movies belong to VN−9, ..., VN .

The results of different methods are shown in Table 1. SIMSKIP improved accuracy
of all three downstream tasks. For KNN task, the improvement is about 4%. For genre
classification and movie recommendation, the average improvement is 2% and 0.2%,
respectively.

4.3 SIMSKIP for Image Embedding

In this experiment, we test SIMSKIP’s performance for refining the self-supervised im-
age embedding. We first use SimCLR [3] to learn the embedding, then we further
refine the embedding with SIMSKIP. STL10 and CIFAR10 datasets were used for eval-
uation. The downstream task is the image classification task and a 3-layer MLP was
employed as a downstream classifier. Table 2 presents the downstream image classifi-
cation accuracy and shows that SIMSKIP refines the embedding space and improves the
downstream task accuracy about 1% in average.

Table 2: Image classification accuracy on STL10 and CIFAR10
Image Classification STL10 CIFAR10

SimCLR 76.09 66.88
SIMSKIP+ mask 75.84 65.93

SIMSKIP+ gaussian 77.73 67.02

4.4 SIMSKIP for Node embedding learned by Supervised Learning

In this section, we test SIMSKIP’s performance of refining the embedding learned by
supervised learning. We use GraphSAGE [8] as the supervised embedding learner. Core
and Pubmed were used for evaluation which GraphSAGE used for its evaluation. In the
experiment, we first train GraphSAGE in supervised setting and treat the output of the
second to last layer as the node embedding, then we apply SIMSKIP. The downstream
task is the node classification task and the same classification head of GraphSAGE was
used as a downstream node classifier.

Table 3 shows that node classification accuracy on Cora and Pubmed datasets. Be-
cause we originally thought that the embedding trained by supervised learning should

3 https://www.kaggle.com/code/laowingkin/netflix-movie-recommendation/data
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fit the downstream task best, further refining it with SIMSKIP won’t improve the down-
stream task performance. However, the experiment results show that SIMSKIP further
improved the downstream task performance even with the embedding learned by a su-
pervised task.

Table 3: Node classification accuray on Cora and Pubmed
Cora Pubmed

GraphSAGE 82.60 81.6
SIMSKIP+ mask 82.60 81.8

SIMSKIP+ gaussian 82.90 82.9

4.5 SIMSKIP for Transformer-based Text Embedding

In this section, we test SIMSKIP’s performance of refining the self-supervised transformer-
based text embedding. Specifically, we further refine the pre-trained SimCSE [6] em-
bedding with SIMSKIP and apply SIMSKIP text embedding to various NLP downstream
tasks including CR [11], MPQA [36], MR [27], MRPC [5], SST-2 [32], SUBJ [26],
and TREC [34]. These tasks are also used in [6]. We use accuracy as the metric, which
means that a higher value indicates better performance. The results are presented in
Figure 4. Our findings suggest that stacking multiple embedding enhancing techniques
(see SimCSE + SIMSKIP) keeps improving the downstream task performance.

Table 4: NLP task accuracy for self-supervised text embedding
Model CR MPQA MR MRPC SST2 SUBJ TREC

SimCSE 85.99 88.5 80.54 73.65 86.47 94.8 82.19
SimCSE + SIMSKIP 86.36 88.27 80.82 74.71 85.55 94.93 80.8

SimCSE + SIMSKIP (mask+noise) 85.44 88.56 78.25 75.01 82.96 95.28 80.1

4.6 Ablation Study

In section, we assess the effect of the skip connection in SIMSKIP. For comparison, we
implemented SIMSKIP− which is obtained by removing the skip connection from SIM-
SKIP. For original embedding, we used embedding learned by SimCLR, STL10 and
CIFAR10 as datasets, image classification as the downstream task. Table 5 shows that
the accuracy of the downstream task with SIMSKIP− is lower than SIMSKIP and even
lower than that with the original SimCLR embedding (see Table 2). This aligns with our
findings in subsection 3.1 which states that a wider and deeper network does not nec-
essarily lead to a better approximation of the optimal function (see Figure 2 (b)). When
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the skip connection is omitted, the initial embedding obtained from the contrastive en-
coder becomes randomly dispersed across the entire embedding space. Consequently,
subsequent updates have limited impact. However, with the inclusion of a skip connec-
tion, we ensure that the initial embedding from the contrastive encoder retains original
useful information, facilitating the effectiveness of the subsequent updating process.

Table 5: Ablation study of SIMSKIP on image classification downstream task (unit: accuracy)
STL10 CIFAR10

SIMSKIP + mask 75.84 65.93
SIMSKIP + gaussian 77.73 67.02
SIMSKIP− + mask 47.1 56.5

SIMSKIP− + gaussian 56.6 66.7

5 Related Work

5.1 Representation Learning

The goal of representation learning is to learn low dimensional vectors of the input data
so that similar data points will be close to each other in the vector space, while dissimilar
data points will be far from each other. It has been applied in many applications, such as
dialogue system [17,19], fact checking [18,20,19,15], and question answering [16] and
so on. Representation learning methods like TransE [1], RESCAL [25] and DistMult
[37] embed entities in the knowledge graph as points in the low dimensional Euclidean
space and model relations as linear or bilinear transformation in the space.

5.2 Contrastive Learning

Contrastive Learning focuses on minimizing the distance between the target embedding
(anchor) vector and the matching (positive) embedding vector [22,14,38,35], while
maximizing the distance between the anchor vector and the non-matching (negative)
embedding vectors. Recent work on contrastive learning have shown that discriminative
or contrastive approaches can (i) produce transferable embeddings for visual objects
through the use of data augmentation [3], and (ii) learn joint visual and language em-
bedding space that can be used to perform zero-shot detection [12]. Given the sparse-
ness and long-tailed property of scene graph datasets, application (i) of contrastive
approach can help the model learn better visual appearance embeddings of (subject,
object) pairs under limited resource settings. Moreover, in application (ii), contrastive
learning gives a clearer separation of the visual embeddings and language embeddings
compared to the traditional black-box neural fusion approaches [9], which allows more
control over both the symbolic triples input and the final output embedding spaces.

One thing to note is that the direct comparison of SIMSKIP to other contrastive
techniques is not the primary focus. The main claim of SIMSKIP is its ability to further
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enhance the quality of embeddings learned by other contrastive methods through a skip-
connection based encoder-projector architecture with contrastive learning in terms of
downstream task performance. Accordingly, SIMSKIP serves as a facilitator of other
techniques rather than a direct competitor. Additionally, since the embedding enhancing
capability of SIMSKIP originates from the architecture rather than a specific contrastive
learning training technique, SIMSKIP benefits from integration with other state-of-the-
art contrastive learning techniques in various dimensions such as loss function and data
augmentation.

6 Conclusion

In this paper, we propose a skip connection based contrastive learning framework (SIMSKIP)
which refine the input embedding space. We theoretically prove that the downstream
task error upper bounds with using SIMSKIP embedding as its input will not be larger
than that with the original embedding. The experiment results show the effectiveness of
the proposed method. For future work, we intend to explore diverse data augmentation
methods in embedding space and continue reducing the error bound in theoretical anal-
ysis. Besides, we plan to analyze how SIMSKIP and related architectures can address
the issues raised in Figure 1.
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