
Automation of Electronic Invoice Validation
using Knowledge Graph Technologies

Johannes Mäkelburg1[0009−0001−3821−7817], Christian John2, and Maribel
Acosta1[0000−0002−1209−2868]

1 TUM School of Computation, Information and Technology, Technical University of
Munich, Heilbronn, Germany firstname.lastname@tum.de

2 Einkaufsbüro Deutscher Eisenhändler GmbH, Wuppertal, Germany
christian.john@ede.de

Abstract. Invoicing is a crucial part of any business’s financial and ad-
ministrative activities. Nowadays, invoicing is handled in the form of
Electronic Data Interchange (EDI), where invoices are managed in a
standardized electronic or digital format rather than on paper. In this
context, EDI increases the efficiency of creating, distributing, and pro-
cessing invoices. The most used standard for representing electronic in-
voices is EDIFACT. Yet, the validation of EDIFACT invoices is not stan-
dardized. In this work, we tackle the problem of automatically validating
electronic invoices in the EDIFACT format by leveraging KG technolo-
gies. The core of our proposed solution consists of representing EDIFACT
invoices as RDF knowledge graphs (KGs). We developed an OWL ontol-
ogy to model EDIFACT terms with semantic descriptions. The invoice
KG can be validated using SHACL constraints acquired from domain
experts. We evaluated our ontology and invoice validation process. The
results show that our proposed solution is complete, correct, and efficient,
and significantly undercuts the efforts of current human evaluation.

Keywords: Electronic Invoice, Ontology, EDIFACT, RDF, RML, SHACL

1 Introduction

In the current business landscape, efficient financial and administrative practices
are paramount for organizations. Central to these operations is the invoicing
process, a critical component that demands accuracy, timeliness, and standard-
ization. Organizations increasingly rely on Electronic Data Interchange (EDI)
to streamline invoicing, transitioning from traditional paper-based methods to
electronic formats. Within EDI, EDIFACT is a widely adopted standard for
representing electronic invoices, offering a uniform approach to their creation,
distribution, and processing.

While EDIFACT has significantly enhanced the efficiency of invoicing pro-
cedures, a notable gap exists in the validation of electronic invoices. This gap
affects business processes that rely on correct invoicing data in a timely manner.
This is the case of the group purchasing organization Einkaufsbüro Deutscher

2 Mäkelburg et al.

Eisenhändler (E/D/E). As E/D/E is represented in 30 European countries,
where many different processes and regulations exist for business documents,
EDIFACT is used as the standard to handle invoices. Yet, as the validation of
EDIFACT invoices is not standardized – i.e., there is no language for represent-
ing constraints over the invoices – in many cases, this process is carried out
manually, which is time-consuming and prone to errors.

This work proposes a solution that leverages KG technologies to validate elec-
tronic invoices in the EDIFACT standard. The core of our approach is to model
electronic invoices as RDF graphs. Shifting to the semantic web technology stack
allows for applying existing open standards and solutions for managing machine-
readable data. To achieve this, first, we present the EDIFACT Ontology. The
ontology captures the terms to model the content of EDIFACT messages using
RDF. Second, we propose the tool edifact-val to validate the content of the
original EDIFACT messages. The tool processes the invoices in the EDIFACT
format and translates them into XML. From the XML files, edifact-val creates
the RDF graphs using the EDIFACT Ontology and the RDF Mapping Language
(RML) [4]. edifact-val validates the invoice RDF graph using constraints de-
fined in the Shapes Constraint Language (SHACL) [13]. The constraints are
created with input from domain experts based on the EDIFACT guidelines.

We evaluate the soundness of our proposed solution with an experimental
evaluation using real-world EDIFACT invoices. The results show that edifact-
val produces complete RDF graphs in the order of seconds. The validation with
SHACL shows that many real-world invoices do not fully comply with the EDI-
FACT standard. Lastly, we conducted an in-use evaluation with domain experts,
who compared edifact-val with the current manual process. The experts found
the tool’s performance remarkable, and are working on integrating it into their
invoice workflows. This shows the potential impact of our proposed solution.

In summary, our contributions are:

– An OWL ontology to represent terms from the EDIFACT standard to model
electronic invoices as RDF KGs.

– A tool dubbed edifact-val to automatically validate invoices using SHACL.

– An experimental evaluation that shows the soundness of our proposed solu-
tions.

– An in-use evaluation where domain experts at the E/D/E assessed the per-
formance and applicability of edifact-val to their business processes.

2 Preliminaries

First, we introduce the EDIFACT invoice concept, which forms the basis for
the knowledge graphs. Then, we introduce the purchase-to-pay ontology, which
builds the basis for an EDIFACT ontology.

EDIFACT Invoice EDIFACT is the most commonly used and most compre-
hensive international standard for electronic data interchange. EDIFACT is used

Automation of Electronic Invoice Validation using KG Technologies 3

Listing 1.1. Excerpt of an EDIFACT invoice

1 UNH+1+INVOIC:D:96A:UN:EAN008’
2 BGM+380+4031541+43’
3 DTM+137:20220908:102’
4 NAD+IV+4317784000000::9++Einkaufsbuero DeutscherEisenhaendler:GmbH+EDE PLatz 1+Wuppertal

++42389+DE’
5 LIN+1++4016671029277:EN::9’
6 PRI+AAA:16.78:::1:PCE’
7 MOA+79:100.68’
8 MOA+124:19.13’
9 UNT+37+1’

across almost all business sectors; the individual sectors are delimited in EDI-
FACT by so-called subsets. The maintenance of the standard lies under the
responsibility of the United Nations and the Economic Commission for Europe.

Documents transmitted in EDIFACT are all types of messages of the business
processes area. The structure of the messages is based on segments; these, in
turn, consist of data elements and data element groups. These three components
together are referred to as the EDIFACT elements.

Listing 1.1 shows an excerpt of a real-world EDIFACT message. The seg-
ments are split into three sections: header-, detail- and summary section. In all
three sections, some segments are required, meaning all three sections are always
represented in an EDIFACT message. However, there are some segments within
the sections that are optional. For example, the header section contains eight
mandatory segments and six conditional segments.

In the header, general information about the invoice is displayed, e.g., the
invoice number (Line 2), the document date (Line 3), and information about the
involved organizations (Line 4). Information about the sold items, including the
net price (Line 6) or the article number (Line 5), is allocated in the detail section.
The summary section contains the total amounts of the invoice, e.g., the total
item amount (Line 7) or the total tax amount (Line 8). Above the header and
below the summary section are segments allocated for the EDIFACT structure,
e.g., the version and type of message (Line 1) or the end character (Line 9).

P2P-O: Purchase to Pay Ontology We use the Purchase-to-Pay Ontology
(P2P-O) [21] as a foundation for modeling concepts from the EDIFACT stan-
dard. P2P-O is an OWL ontology that models semantic representation of invoices
based on the core invoice model of the European Standard EN 16931-1:2017 [6].

P2O-O is divided into seven modules: item, price, documentline, organiza-
tion, document, invoice, process. The item module allows for describing products
listed on the invoices. Not only sold items are mentioned with the term, but also
working hours. The price module makes it possible to describe the prices of
the items and the amounts of money in an invoice. The possibility of making
statements about the positions of prices and items on documents is enabled by
the model documentline. The participating organizations are described by the
module organization. In the document module ontology resources which are es-
sential for the purchase-to-pay process are provided. The document-type invoice

4 Mäkelburg et al.

Table 1. Competency Questions for the EDIFACT Ontology

Name Competency Question
CQ 0 What invoices are all listed in an EDIFACT message?
CQ 1 Which organizations are involved in the invoice?
CQ 2.1 What role does organization S play in the invoice?
CQ 2.2 Which organization is the buyer in the invoice?
CQ 3.1 What information is displayed about the involved organizations ?
CQ 3.2 What is the address of the buyer?
CQ 4 What items are sold in the invoice?
CQ 5.1 What information is displayed about the items sold?
CQ 5.2 What is the net price of the items sold in the invoice?
CQ 6.1 What are the invoice details of the invoice?
CQ 6.2 What is the invoice amount of the invoice?
CQ 6.3 What is the invoice number?
CQ 7 What information must be provided so that the file format is valid?
CQ 8 To which business process can the invoice be assigned?

is described more specifically in the module invoice. Therefore the two modules
document and documentline are used. In the invoice module, all the mandatory
constraints from EN 16931 are implemented. Lastly, the process module contains
classes for a specific description of the kind of purchase-to-pay process.

3 Our Approach

Given an electronic invoice in the EDIFACT format, the problem tackled in this
paper is to validate the correctness of the invoice by representing the invoice
as an RDF knowledge graph (KG). Our proposed solution comprises two parts:
(1) a proposed ontology to represent EDIFACT concepts (§ 3.1), based on the
concepts presented in Sect. 2, and (2) the edifact-val tool to perform the
validation of invoices using KG technologies (§ 3.2).

3.1 EDIFACT Ontology

Competency Questions We use the NeOn method [25] as a systematic ap-
proach to structure and develop the EDIFACT ontology according to an estab-
lished principle. The ontology development process involves the formulation of
the requirements, framework, and competency questions of the ontology. In this
work, these steps were carried out in collaboration with Electronic Data Inter-
change experts from E/D/E. Listing 1 shows the competency questions have
been drawn up based on the EDIFACT guideline. The competency questions
(CQ) are grouped according to different aspects of the invoices. CQs in groups 1
and 2 (i.e., CQ 1, 2.1, and 2.2) are concerned with organizations and their role
in the invoice. CQ 3.1 and 3.2 address specific information about the involved
organizations. CQ 4, 5.1, and 5.2 request information about the items listed in
the invoice. CQ6 handles the identifier or number of the invoice. Lastly, CQ
7 and 8 address aspects of the invoice metadata, i.e., the EDIFACT structure
elements and related business processes.

Automation of Electronic Invoice Validation using KG Technologies 5

Table 2. Overview of linked ontologies and vocabularies in the EDIFACT Ontology

Prefix Name Prefix Frequency
of use

agentRole https://archive.org/services/purl/domain/modular_ontology_de
sign_library/agentrole#

5

dc http://purl.org/dc/elements/1.1# 2
frapo http://purl.org/cerif/frapo/ 3
schema http://schema.org/ 3
org http://www.w3.org/ns/org# 1
p2p-o-doc-line https://purl.org/p2p-o/documentline# 2
p2p-o-doc https://purl.org/p2p-o/document# 1
p2p-o-inv https://purl.org/p2p-o/invoice# 3
p2p-o-item https://purl.org/p2p-o/item# 2
p2p-o-org https://purl.org/p2p-o/organization# 4
vcard http://www.w3.org/2006/vcard/ns# 2

Reuse of Ontology Design Patterns and Existing Vocabularies and
Ontologies Following ontology design best practices [25, 17], we reuse existing
resources. An overview of the reused resources and the number of reuses can be
found in Table 2. We apply the agent role pattern from the Modular Ontology
Design Library (MODL) [22] for modelling the participation of organizations in
invoices. In particular, the same organization can have many roles (seller, sup-
plier, etc.) in the same or different invoices, to which different property values
can be associated depending on its role. The ontologies listed in Table 2 also
provide adequate solutions for our purpose. Most of them are reused in the class
AgentRole, for instance, the country code from the Funding, Research Adminis-
tration, and Projects Ontology [23] or the address of the vCard Ontology [16].
Also, four of the seven different main classes we defined in our EDIFACT On-
tology are linked to concepts of these vocabularies or ontology. For example, the
class FormalOrganization is linked to the Core Organization Ontology (org), the
E-Invoice to the P2P-O module document, and Item to the P2P-O module item.

Ontology Description Based on the gaps identified in existing vocabularies
and ontologies discussed in the previous section, we propose the EDIFACT On-
tology tailored to represent the concepts and fields of the EDIFACT standard.
The proposed OWL ontology comprises 28 classes, 10 OWL object properties,
233 OWL data properties, and 6 annotation properties. The ontology was de-
veloped using WebProtégé [11]. Figure 1 illustrates the main concept of the
EDIFACT ontologies by showing the connections between the different classes.
The EDIFACT Ontology can be found under https://purl.org/edifact/ont
ology. Additionally, it has been integrated into the LOV catalogue, available at
https://lov.linkeddata.es/dataset/lov/vocabs/edifact-o. The classes,
their properties, and how they address the competency questions from Listing 1
are explained in more detail in the following.

E-Invoice This is the main class of the EDIFACT ontology, and its individuals
or entities represent electronic invoices. This class is connected to other classes
through object properties, including, EDIFACT-Structure via the property fol-
lowsStandard, Item via the property hasItem, InvoiceDetails via the property
hasInvoiceDetails, and AgentRoles via the isProvidedBy property to capture the

6 Mäkelburg et al.

Invoice
DetailsItemAgent

Role
EDIFACT
Structure

E-Invoice

Invoice
Content

Formal
Organization

providesAgentRole

isProvidedBy

isPerfomedBy

perfomesAgentRole

hasItem

isItemOf

hasInvoiceDetails

isInvoiceDetailOf followsStandard

isStandardOf

Subclass of
Subclass of

Fig. 1. Main concepts of the EDIFACT ontololgy. Source: WebVOWL [15]

role of organizations in the invoice. The only data property used to describe this
class is belongsToProcess which displays the business process of the invoice. This
class allows for handling the competency questions CQ 0 and CQ 8.

EDIFACT-Structure This class contains all the information that ensures that the
invoice file meets the requirements of the EDIFACT file format. This information
appears at the beginning and end of a message and, therefore, has no correspon-
dence with the content of the individual invoices. For this reason, this class
and the InvoiceContent class are disjoint, specified with the owl:disjointWith
predicate. Nevertheless, as this information belongs to an invoice, this class is
connected to the class E-Invoice via the object property followsStandard. Among
the datatype properties of the entities of this class, we have creationDate, dataEx-
changeCounter, messageReferenceNumber, and senderIndicator. This class is as-
sociated with the competency question CQ 7.

Invoice Details This class contains all the information that can only occur in the
header- and summary sections of the invoices. Exemplary datatype properties
of this class are the document date (hasDocumentDate), the document number
(hasDocumentNumber), the delivery condition (deliveryCondition) and the in-
voice amount (hasInvoiceAmount). The connection of the InvoiceDetails class to
the E-Invoice class is done via the object property hasInvoiceDetails. The class
Invoice Details allows handling the competency questions CQ 6.1, 6.2, and 6.3.

Item This class allows for representing an item listed in the invoice, which is
found in the detail section of the invoice. Examples of the datatype properties
for an item are the name of the item (p2p-o-item:Item), the net price of the
item (hasNetPriceOfItem), the net weight of an item (hasNetWeight), the num-
ber assigned to a manufacturer’s product according to the International Article
Numbering Association (internationalArticleNumber), etc. It is to mention that
the ratio between the classes E-Invoice and Item is 1:N. Therefore, here we were
confronted with the design decision of modeling the relationship between these
two classes as a multi-valued property or as an RDF collection to represent a
close list. We decided on the former option by defining the object property ha-
sItem (and its inverse isItemOf) between the Item and the E-Invoice classes,
as this facilitates the validation and querying of the invoices. The Item concept
allows for handling the competency questions CQ 4, 5.1, and 5.2.

Automation of Electronic Invoice Validation using KG Technologies 7

Listing 1.2. Representation of organizations using AgentRole and FormalOrganization

1 @prefix invoice: <http://www.ede.com/edifact/invoice#>.
2 @prefix edifact-o: <https://purl.org/edifact/ontology#> .
3 @prefix agentRole: <https://archive.org/services/purl/domain/modular_ontology_design_library/

agentrole#> .
4 @prefix frapo: <http://purl.org/cerif/frapo/> .
5 @prefix p2p-o-org: <https://purl.org/p2p-o/organization#> .
6 @prefix vcard: <http://www.w3.org/2006/vcard/ns#> .
7

8 invoice:r999995 a edifact-o:DeliveryPartyRole;
9 frapo:hasCountryCode "DE";

10 edifact-o:hasCity "Wuppertal";
11 edifact-o:hasCountry "Deutschland";
12 vcard:hasStreetAddress "In der Fleute 153";
13 vcard:postalCode "42389";
14 agentRole:isProvidedBy invoice:i999999;
15 p2p-o-org:formalName "E/D/E-GmbH Anlieferstelle L205" .
16

17 invoice:r999996 a edifact-o:InvoiceeRole;
18 frapo:hasCountryCode "DE";
19 edifact-o:hasCity "Wuppertal";
20 edifact-o:hasCountry "Deutschland";
21 vcard:hasStreetAddress "EDE Platz 1";
22 vcard:postalCode "42389";
23 agentRole:isProvidedBy invoice:i999999;
24 p2p-o-org:formalName "Einkaufsuero Deutscher Eisenhaendler".
25

26 invoice:4317784000000 a edifact-o:FormalOrganization;
27 agentRole:performsAgentRole invoice:r999995, invoice:r999996 ;
28 p2p-o-org:globalLocationNumber 4317784000000 .

InvoiceContent This class allows for modelling the information that can be found
in all three sections of the invoices. As a result, the information of the Invoice-
Content class is defined as the union of the classes Item and InvoiceDetails, i.e.,
InvoiceContent owl:unionOf (Item InvoiceDetails). Creating the InvoiceContent
class makes it possible to define properties that apply to all parts of the invoice
by using this class as the domain or range of those properties. This ensures the
consistency of the ontology.

AgentRole According to the guidelines, an organization can, or sometimes must,
have many different roles. For example, in the warehousing business, one or-
ganization needs to have three roles: Buyer Role, Invoicee Role, and Delivery
Party Role. We model these cases using the Role ontology pattern as defined by
Shimizu et. al [22] and Grüninger & Fox [8]. In our ontology, the purpose of the
class AgentRole is to represent the manifold roles an organization can have in an
invoice. As a solution, several subclasses have been created, each representing
one of these roles. The connection to the E-Invoice class exists through the ob-
ject property isProvidedBy with the E-Invoice class in the range. The AgentRole
class allows for addressing the competency questions C 2.1, 2.2, 3.1, and 3.2.

FormalOrganization This class represents the organizations involved in the mes-
sages, which addresses the competency question CQ 1. The properties assigned
to the FormalOrganization class are solely responsible for allocating the role that
an organization plays in an invoice through performsAgentRole, and for provid-

8 Mäkelburg et al.

RML
Mapping

EDIFACT
Invoice

XML
Invoice

Invoice
Validation
Result

Invoice
Knowledge
Graph

EDIFACT
Ontology

RDF
Validation

Invoice
Pre-Processing

Fig. 2. Overview of edifact-val

ing a globally unique identifier for organizations, i.e., globalLocationNumber. In
the EDIFACT ontology, the only connection of the FormalOrganization class
with another class is with the AgentRole class via the object property perform-
sAgentRole with the AgentRole class in the range.

We have opted against the intuitive option of assigning the information re-
garding the organization to the class of FormalOrganization. Instead, we assign
them to the class AgentRole, more precisely to one of its subclasses. This is be-
cause some of the displayed information can change for the same organization
depending on its role in an invoice. We illustrate this in the following example.

Listing 1.2 showcases the RDF triples of the different agent roles related to
warehouse business invoices. The address of the organization changes depending
on its role: the address of the warehouse In der Fleute 153 (Line 12) is used
when the organization has the DeliveryParty Role, while the main location EDE
Platz 1 (Line 21) is used for the Invoicee Role. However, all roles belong to the
same organization, as evidenced by both agent roles being performed by the
same FormalOrganization (Line 27 and 28).

3.2 The EDIFACT-VAL Tool

Now that we have modelled the terms of the EDIFACT standard in an OWL
ontology (see Sect. 3.1), the edifact-val tool processes the electronic invoices
in the EDIFACT format to validate their content using KG technologies. Con-
cretely, the tool carries out the following steps (cf. Figure 2). (1) Invoice Pre-
processing: Translates the invoice files into XML files. (2) RML Mapping:
Creates RDF knowledge graphs from the invoice XML files using generated RML
mappings. (3) RDF Validation: Validates the invoice RDF graphs using con-
straints based on EDIFACT guidelines and reports from domain experts, which
are formulated using the Shapes Constraints Language (SHACL) [13].

Invoice Pre-Processing This step aims to prepare the EDIFACT message in
a way that meets the requirements for the creation of an RDF graph. Despite
that EDIFACT is an open standard, the file format is not yet widely compati-
ble with existing tools, especially the ones related to knowledge graphs. Hence,
a transformation into a compatible format is required. Our choice of format is
XML, justified by the ease of modification and the numerous processing pos-
sibilities. Then, edifact-val extends the resulting XML files, to incorporate
additional XML elements and attributes that capture the qualifiers in EDI files.

Automation of Electronic Invoice Validation using KG Technologies 9

EDI files use qualifiers to secure file compactness, i.e., several values are packed
into a single field. An example of this is shown in Line 4 of Listing 1.1. There
the NAD-segment with the qualifier IV is used to display information about the
Invoicee of the invoice. To handle such qualifiers, the pre-processing separates
this field into several XML elements, creating a one-to-many correspondence
between EDIFACT elements and XML elements.

RDF Graph Creation for Invoices EDIFACT invoices can be transformed
into RDF representations using our proposed EDIFACT Ontology described in
Sect. 3.1. To generate RDF knowledge graphs based on a (semi-structured) data
source, we define mapping rules. For this, we use the RDF Mapping Language
(RML) [4], which provides a way to transform heterogeneous data into the RDF
data model. Yet, manually creating RML mapping is a complex task [12], es-
pecially when a large number of terms are involved. To ease the definition of
the mapping rules, languages like YARRRML [26] and ShExML [7] provide a
human-friendly serialization of RML. In this work, we use YARRRML [26] as
it allows users to specify simpler mapping rules compared to RML;3 these map-
pings are then automatically transformed into the RML mappings, later used to
transform the invoice XML file into an RDF graph.

Our YARRRML mapping contains six mappings, each representing one dif-
ferent class of the EDIFACT ontology. Compared to the EDIFACT ontology,
only six of the seven classes are displayed, as the class InvoiceContent only has
the purpose of providing a domain or range for some resources. When creating
each mapping, two types of rules must be defined: (i) rules for defining the data
sources, i.e., the XML files of the EDIFACT invoices, and (ii) rules for generating
the RDF triples. In total, there are 245 different data source rules, since a rule
is generated for each EDIFACT element. Depending on which information is to
be displayed in the mappings, the data sources are assigned to the mappings.
The rules for generating the RDF triples are divided into two parts. Part one
defines the rule for identifying the subject of the RDF triple. In our tool, this
is done by the added attributes from the preprocessing 3.2. The second part
defines the rules for the predicates and objects of the RDF triple. The predicate
rule contains the ontology resources, and the object rule contains the identifica-
tion of the value of the predicate. In our mapping, these values are either the
values of XML elements or ontology resources. The RML mappings obtained
with YARRRML and the invoice XML files are then fed into the RMLMapper4

tool, to obtain the invoice RDF graph. Exemplary transformation of the NAD
segment from an EDIFACT message to an RDF graph can be seen in Line 4 in
Listing 1.1 to Lines 17-24 and Lines 26-28 in Listing 1.2.

3 E.g., our YARRML file has 2,924 lines vs. 366,709 lines in the generated RML file.
4 https://github.com/RMLio/rmlmapper-java

10 Mäkelburg et al.

Listing 1.3. SHACL constraint for
mandatory and single property values

1 :ExistenceDocumentNumber
2 a sh:NodeShape;
3 sh:targetClass edifact-o:InvoiceDetails;
4 sh:property [
5 sh:path edifact-o:hasDocumentNumber;
6 sh:minCount 1;
7 sh:maxCount 1;] .

Listing 1.4. SHACL constraint for for-
matting check (datatype and length)

1 :LengthDocumentNumber
2 a sh:NodeShape;
3 sh:targetClass edifact-o:InvoiceDetails;
4 sh:property [
5 sh:path edifact-o:hasDocumentNumber;
6 sh:datatype xsd:string;
7 sh:maxLength 12;] .

Invoice Validation using SHACL Once the invoice RDF graph has been cre-
ated, the next step is validating the knowledge graphs. We use the W3C recom-
mended language, Shapes Constraint Language (SHACL) [13], for the validation
of RDF graphs. Constraints in SHACL can be specified over specific classes of
the ontology using the sh:targetClass predicate, and over specific properties of
the target class using the sh:path predicate. In our work, the shapes were cre-
ated based on the input of the domain experts. For validating the correctness of
the representation we create shapes based on the EDIFACT invoice guidelines.
For example, shapes can express mandatory or conditional modules according
to these guidelines. Listing 1.3 shows a SHACL constraint for specifying that
the documentNumber property is mandatory (sh:minCount 1) and single valued
(sh:maxCount 1) for entities of the class InvoiceDetails. SHACL can also be used
to specify constraints about the formatting of the EDIFACT elements, including
length, number, and permitted characters. Listing 1.4 shows a SHACL constraint
for checking the datatype (sh:datatype) and the length (sh:maxLength) for the
documentNumber property of the target class InvoiceDetails.

In addition to checking the structure and completeness of the invoices, edifact-
val also checks the logical correctness of the information with SHACL. This
includes, for example, that the total net values of the goods in an invoice cor-
respond to the sum of the net amounts of the items sold in the invoice. This
type of constraint that involves aggregations over values of several RDF triples
can be expressed in SHACL using SPARQL queries. Listing 1.5 shows how the
aforementioned constraint is formulated with SHACL and SPARQL.

Listing 1.5. SHACL constraint to check that the total net value of the invoice is equal
to the sum of the value of the items listed in the invoice

1 :SumNetPrice a sh:NodeShape ;
2 sh:targetClass edifact-o:InvoiceDetails ;
3 sh:sparql [
4 a sh:SPARQLConstraint ;
5 sh:message "edifact-o:hasTotalLineItemAmount must equal the sum of all values of

edifact-o:hasLineItemAmount";
6 sh:prefixes [sh:declare [
7 sh:prefix "edifact-o" ;
8 sh:namespace "https://purl.org/edifact/ontology#"^^xsd:anyURI ;]] ;
9 sh:select

10 """SELECT $this (edifact-o:hasTotalLineItemAmount AS ?path) (?totalAmount AS ?value)
11 WHERE { $this a edifact-o:InvoiceDetails ; edifact-o:hasTotalLineItemAmount ?

totalAmount .
12 { select $this (sum(?itemAmount) as ?sum) {
13 ?item edifact-o:isItemOf ?invoice; edifact-o:hasLineItemAmount ?itemAmount .
14 ?invoice edifact-o:hasInvoiceDetails $this . } group by $this }
15 FILTER (?sum != ?totalAmount) }""" ;] .

Automation of Electronic Invoice Validation using KG Technologies 11

4 Evaluation

In this section, we empirically evaluate the developed EDIFACT ontology and
edifact-val tool in terms of soundness and performance. Concretely, we focus
on the following core questions:

Q1 Does the EDIFACT ontology meet the state-of-the-art standards? (§4.2)
Q2 Are RDF graphs created with edifact-val sound? (§4.3)
Q3 Are the validation of edifact-val results complete and correct? (§4.4)
Q4 How long does edifact-val take to validate an EDIFACT invoice? (§4.5)
Q5 Is edifact-val applicable to real-world business processes? (§4.6)

4.1 Experimental Set Up

Dataset: We use 44 different real-world EDIFACT messages from 12 differ-
ent suppliers and 6 different business cases to evaluate the performance of the
edifact-val tool. The selection of messages has been made together with the
EDI experts from E/D/E to have a range of messages representing the day-to-
day business workflow. Since each supplier may include different segments and
data elements in the invoices, the selected messages represent a wide range of
segments and segment combinations.

Tool Implementation: edifact-val is implemented in Python 3. For SHACL
validation, we use pySHACL [24], an open-source Python library. The edifact-
val is available online.5 edifact-val is equipped with 394 SHACL constraints
provided by the experts following the EDFICAT standard. All experiments have
been conducted on a machine with Intel Core i5 CPU and 8 GB of RAM.

4.2 Results of the Ontology Evaluation

Compliance with Ontology Best Practices We assessed our EDIFACT On-
tology concerning current standards and best practices for ontology publication
using OOPS! [19]. OOPS! (OntOlogy Pitfall Scanner!) is a web service6 that re-
ceives the URI of the ontology and performs checks in the structural, functional,
and usability profiling. In total, OOPS! tests for 41 pitfalls concerning modelling
decisions, ontology language, ontology clarity, ontology understanding, no in-
ference, wrong inference, application context, common sense, and requirement
completeness. The OOPS! results show that our EDIFACT ontology meets state-
of-the-art ontology standards. Only one pitfall (P22) occurred during the evalu-
ation regarding naming conventions in the ontology terms. Since we incorporate
resources from eleven ontologies, some have different naming conventions. For
example, in the vCard Ontology [16], the term ’has’ is always in front of a data
property, http://www.w3.org/2006/vcard/ns#hasStreetAddress, whereas
the Dublin Core-Ontology [2] does not do it, http://purl.org/dc/elements

5 https://github.com/DE-TUM/EDIFACT-VAL
6 https://oops.linkeddata.es

12 Mäkelburg et al.

/1.1/date. Yet, this pitfall is marked as “minor level” in OOPS!, which means
that it does not affect the overall quality of the EDIFACT Ontology.

Coverage of the Competency Questions To ensure that the EDIFACT On-
tology satisfies the competency questions CQ (cf. Listing 1), we have translated
each CQ into a SPARQL query. The SPARQL queries are available in a Jupyter
notebook.7 Using the ontology and one EDIFACT message from the dataset, we
execute the SPARQL queries using the Python library rdflib [14]. The results
show that the CQ can be answered with our RDF representations.

4.3 Completeness of the Invoice KG Generated by EDIFACT-Val

In this work, we define completeness as follows: An invoice RDF graph is com-
plete if every relevant data element in an EDIFACT message is represented in
the graph. Since relevance is a domain-specific criterion, we consulted with do-
main experts to categorize elements in EDIFACT as relevant or negligible. Then,
we analyze the RDF graph completeness considering the three cases of how the
EDIFACT data corresponds with RDF representations:

Case i (No Correspondence): The EDIFACT element is deemed negligible
by experts and, therefore, is not encoded in the RDF graph.

Case ii (One-to-one Correspondence): The EDIFACT element is directly
represented as one element in the EDIFACT Ontology.

Case iii (One-to-many Correspondence): The EDIFACT element is repre-
sented using several elements of the EDIFACT Ontology.

Distinguishing between these cases allows us to better understand and quan-
tify the completeness of the generated RDF graphs. They ensure that no impor-
tant information in the EDIFACT messages is omitted or incorrectly translated
into the RDF representations.

Case i indicates that the negligible EDIFACT elements should not affect the
KG completeness. In our dataset, we identified 44 of 438 of these elements.

Case ii allows for a straightforward measurement of completeness by com-
puting the ratio between the number of RDF triples – for which the terms have
a one-to-one correspondence with EDIFACT – and the number of these EDI-
FACT data items in the messages. After this evaluation, we obtained that the
RDF graphs produced by edifact-val are complete (i.e., completeness 1.0).

Case iii entails a more sophisticated transformation (compared to the pre-
vious case) from the EDIFACT format into the RDF representation. The one-
to-many correspondence in EDIFACT elements occurs in the representation of
organizations, where EDIFACT combines the qualifier and identification of the
organization in a single element. Yet, these are represented using several (more
fine-grained) properties in the EDIFACT Ontology as they model different pieces
of information about the organizations. The one-to-many correspondence case

7 https://github.com/DE-TUM/edifact-ontology/blob/main/CompetencyQuestion

s/CQ-SPARQL.ipynb

Automation of Electronic Invoice Validation using KG Technologies 13

Table 3. Validation results of SHACL constraints for different business processes (BP).
BP names are omitted in accordance with privacy regulations

Business Process BP1 BP2 BP3 BP4 BP5 BP6 Total

EDIFACT Invoices 96 9 7 12 906 8 1,038
SHACL Constraints 86 81 48 36 57 86 394
Violations 692 41 45 58 859 38 1,733

is handled by edifact-val in the invoice pre-processing step (cf. Sect. 3.2). In
new qualifiers can be defined during production by the users, edifact-val im-
plements a built-in mechanism to display unknown qualifiers for elements. In all
tested 1,038 EDIFACT invoices, only 2 invoices yield ‘unknown qualifier’, i.e.,
the completeness of the RDF graph is 0.998 (out of 1.0). We inspected these
invoices and found that these cases only occur due to non-standardized and self-
created qualifiers in the original EDIFACT invoice. Based on these results, we
can conclude that all admissible qualifiers are included in the resulting RDF
graphs. I.e., edifact-val achieves 1.0 completeness for admissible qualifiers.

4.4 Results of Invoice Validation with EDIFACT-Val

First, as a controlled evaluation, we manually introduced errors in a sample of
EDIFACT invoices to test whether edifact-val can detect them. These errors
would cause violations of the SHACL constraints defined in our approach. These
results show that edifact-val successfully detected all the synthetic errors.

Next, we perform the validation over the entire dataset of EDIFACT mes-
sages. For this analysis, we present the results of the SHACL validations over the
constraints defined for each business process in E/D/E. Table 3 presents the re-
sults of this evaluation. The results show the original EDIFACT invoices indeed
contain errors that may affect the correctness of the invoice and compromise the
integrity of related business processes.

4.5 Runtime Performance of EDIFACT-Val

We measure the efficiency of the edifact-val when processing the invoices, i.e.,
the elapsed time between the tool receiving an EDIFACT message and producing
the validation result. This time includes the generation of the RDF graph and
its evaluation using the SHACL constraints. We selected one EDIFACT message
per supplier, which may contain several invoices with varying numbers of ED-
IFACT data items. We ran edifact-val 10 times on each EDIFACT message
using the hyperfine [18] command-line benchmarking tool. Figure 3 reports the
average and variance of the runtime per message. These results indicate that the
edifact-val runtime is impacted by the number of elements in the messages, as
expected. Overall, the mean time for validating an EDIFACT message is within
an interval of 10 to 12 seconds. Only EDIFACT messages with more than 5,000
data items require more processing time, around 30 seconds.

14 Mäkelburg et al.

196 222 261 469 549 663 1060 1067 1121 2339 7699 8206
Number of Data Items in the EDIFACT Message

10

15

20

25

30

M
ea

n
Ru

nt
im

e
(s

ec
.)

Fig. 3. edifact-val runtime (sec.) for processing an EDIFACT message

4.6 In-Use Evaluation

Since the development was motivated by the group purchasing organization
E/D/E, we also evaluated the applicability of our proposed solution approach
to the E/D/E invoice processes. We asked the domain experts to validate the
EDIFACT messages following the usual procedure, which is done manually. On
average, it takes the experts around 30 minutes to validate one EDIFACT mes-
sage. In comparison to edifact-val (cf. Figure 3), the longest runtime is in the
order of 30 seconds, which results in a time saving of around 98%.

We also asked the domain experts to analyse the violations reported by
edifact-val using the SHACL constraints. We learned that while the violations
correctly capture the strictly formulated EDIFACT guidelines, certain violations
are not critical in practice. This information can be included in the SHACL con-
straints implemented by edifact-val using the sh:severity predicate of SHACL.
This will be part of our future work.

5 Related Work

Ontologies for Electronic Invoices Schulze et al. [21] proposes an ontology, the
Purchase-To-Pay Ontology (P2P-O) to represent electronic invoices. P2P-O re-
lies on the European Standard EN 16931-1:2017 intending to provide ontology
resources for all mandatory information in a purchase-to-pay process, which in-
cludes the invoicing process. In contrast, we aim not only to provide mandatory
information for processing an electronic invoice, we also aim to validate the
completeness and syntactical correctness of the invoices regarding their specific
format. Furthermore, the terms used in the EDIFACT messages are not captured
in the P2P-O ontology. This is why the creation of a standard-specific ontology,
the EDIFACT ontology, is crucial in this case.

In the literature, we also found several ontologies and vocabularies that pro-
vide invoice-related definitions. The ones we reuse can be found in Table 2.
However, they only present small parts of invoices. For example, schema.org [9]
provides terms for the amount of money and currencies. Yet, these vocabularies
are not specific enough to model all the EDIFACT terms.

Automation of Electronic Invoice Validation using KG Technologies 15

Invoice Validation Several works have tackled the problem of invoice validation
from different perspectives. Emmanuel and Thakur [5] present an approach that
implements an EDI invoice validation framework; this work focuses on checking
the completeness of invoices (defined as the number of fields) by comparing ac-
tual values to expected values as given in an XML file. The expected value is
defined in a rule set. Similarly, our work validates invoices but uses KG tech-
nologies and more expressive SHACL constraints formulated by experts and the
EDIFACT standard. Other approaches also perform invoice validation but not
in the context of EDI. For example, Sál [20] presents a tool to check whether
the invoice fields are provided correctly to a digital system w.r.t. to the origi-
nal invoice in PDF. Other solutions [1, 3, 10] propose processing and classifying
invoices in PDF using Machine Learning (ML) models. All these works check
for the correctness of the translation of the invoices into machine-readable for-
mats, and not the correctness of the original invoices. These approaches greatly
differ from edifact-val, as it processes invoices that are already in a machine-
readable format and validates the correctness of the original EDIFACT invoice.
Lastly, the work by Schulze et al. [21] uses SPARQL queries to perform analyt-
ical tasks on the invoices. Examples of these include finding items that are sold
in large cities. In contrast, edifact-val is tailored to check the conformance of
the invoices to the EDIFACT standard and other constraints defined by experts.

6 Conclusion and Future Work

We presented a novel automatic approach edifact-val that assists EDI experts
in validating EDIFACT messages with the help of an invoice knowledge graph.
The EDIFACT messages are transformed into RDF graphs using the proposed
EDIFACT Ontology and RML mappings. The graphs are further validated using
SHACL constraints specified with the input from domain experts.

Our experiments show that our proposed solutions enable the validation of
EDIFACT invoices effectively. In particular, the evaluation with domain experts
revealed that edifact-val can considerably reduce the manual efforts. One
crucial takeaway from this evaluation is that the benefit of automatic approaches
like edifact-val relies on the quality of the validation constraints. Creating too
strict constraints can result in mistakenly flagging invoices as faulty even though
the errors may not affect the invoice processing workflow. Therefore, assigning
proper severity levels to the constraints is essential to develop usable solutions.

Future work can extend our solution for different business documents in dif-
ferent EDIFACT formats, i.e. purchase order message (ORDERS) or despatch
advice message (DESADV). Furthermore, the obligatory implementation of elec-
tronic invoices in Germany by 2025 will make the application of open standards
more prominent, especially for organizations that find the cost or time required
for EDIFACT implementation too demanding. In this line, we hope that our
work contributes to the implementation of electronic invoice processing using
open knowledge graph and semantic web technologies.

16 Mäkelburg et al.

References

1. Baviskar, D., Ahirrao, S., Kotecha, K.: Multi-layout unstructured invoice
documents dataset: A dataset for template-free invoice processing and its
evaluation using ai approaches. IEEE Access 9, 101494–101512 (2021).
https://doi.org/10.1109/ACCESS.2021.3096739

2. DCMI Usage Board: DCMI Metadata Terms. https://www.dublincore.org/spe
cifications/dublin-core/dcmi-terms/ (2020)

3. Desai, D., Jain, A., Naik, D., Panchal, N., Sawant, D.: Invoice processing using rpa
& ai. In: Proceedings of the International Conference on Smart Data Intelligence
(ICSMDI 2021) (2021)

4. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de
Walle, R.: Rml: A generic language for integrated rdf mappings of heterogeneous
data. Ldow 1184 (2014)

5. Emmanuel, M., Thakur, S.: An approach to develop invoice validation framework.
International Journal of Engineering Research & Technology (IJERT) 1 (2012)

6. EN16931-1:2017: Electronic invoicing-part 1 : Semantic data model of the core ele-
ments of an electronic invoice. Tech. rep., European Committee for Standardization
(2017)

7. Garćıa-González, H., Boneva, I., Staworko, S., Labra-Gayo, J.E., Lovelle, J.M.C.:
Shexml: improving the usability of heterogeneous data mapping languages for first-
time users. PeerJ Computer Science 6, e318 (2020)

8. Grüninger, M., Fox, M.S.: The role of competency questions in enterprise engineer-
ing. In: Benchmarking—Theory and practice, pp. 22–31. Springer (1995)

9. Guha, R.V., Brickley, D., Macbeth, S.: Schema.org: Evolution of Structured Data
on the Web. Communications of the ACM 59(2), 44–51 (2016)

10. Gunaratne, H., Pappel, I.: Enhancement of the e-invoicing systems by increasing
the efficiency of workflows via disruptive technologies. In: Electronic Governance
and Open Society: Challenges in Eurasia: 7th International Conference, EGOSE
2020, St. Petersburg, Russia, November 18–19, 2020, Proceedings 7. pp. 60–74.
Springer (2020)

11. Horridge, M., Gonçalves, R.S., Nyulas, C.I., Tudorache, T., Musen, M.A.:
Webprotégé: A cloud-based ontology editor. In: Companion Proceedings of The
2019 World Wide Web Conference. pp. 686–689 (2019)

12. Iglesias-Molina, A., Chaves-Fraga, D., Dasoulas, I., Dimou, A.: Human-Friendly
RDF Graph Construction: Which One Do You Chose? In: International Conference
on Web Engineering. pp. 262–277. Springer (2023)

13. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL). W3C
recommendation, W3C (Jul 2017), https://www.w3.org/TR/2017/REC-shacl-
20170720/

14. Krech, D., Grimnes, G.A., Higgins, G., Hees, J., Aucamp, I., Lindström, N.,
Arndt, N., Sommer, A., Chuc, E., Herman, I., Nelson, A., McCusker, J.,
Gillespie, T., Kluyver, T., Ludwig, F., Champin, P.A., Watts, M., Holzer,
U., Summers, E., Morriss, W., Winston, D., Perttula, D., Kovacevic, F.,
Chateauneu, R., Solbrig, H., Cogrel, B., Stuart, V.: RDFLib (Aug 2023).
https://doi.org/10.5281/zenodo.6845245, https://github.com/RDFLib/rdflib

15. Lohmann, S., Link, V., Marbach, E., Negru, S.: Webvowl: Web-based visualization
of ontologies. In: Knowledge Engineering and Knowledge Management: EKAW
2014 Satellite Events, VISUAL, EKM1, and ARCOE-Logic, Linköping, Sweden,
November 24-28, 2014. Revised Selected Papers. 19. pp. 154–158. Springer (2015)

Automation of Electronic Invoice Validation using KG Technologies 17

16. McKinney, J., Iannella, R.: vCard Ontology - for describing People and Organiza-
tions. W3C note, W3C (May 2014), https://www.w3.org/TR/2014/NOTE-vcard-
rdf-20140522/

17. Noy, N.F., McGuinness, D.L., et al.: Ontology development 101: A guide to creating
your first ontology (2001)

18. Peter, D.: hyperfine (Mar 2023), https://github.com/sharkdp/hyperfine
19. Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M.C.: Oops!(ontology pit-

fall scanner!): An on-line tool for ontology evaluation. International Journal on
Semantic Web and Information Systems (IJSWIS) 10(2), 7–34 (2014)

20. Sál, J.: Data mining as tool for invoices validation. IT for Practice 2018 p. 121
(2018)

21. Schulze, M., Schröder, M., Jilek, C., Albers, T., Maus, H., Dengel, A.: P2p-o: A
purchase-to-pay ontology for enabling semantic invoices. In: The Semantic Web:
18th International Conference, ESWC 2021, Virtual Event, June 6–10, 2021, Pro-
ceedings 18. pp. 647–663. Springer (2021)

22. Shimizu, C., Hirt, Q., Hitzler, P.: Modl: A modular ontology design library. arXiv
preprint arXiv:1904.05405 (2019)

23. Shotton, D.: FRAPO, the Funding, Research Administration and Projects Ontol-
ogy. Tech. rep. (april 2017), http://purl.org/cerif/frapo

24. Sommer, A., Car, N.: pySHACL (Jan 2022).
https://doi.org/10.5281/zenodo.4750840, https://github.com/RDFLib/pySHACL

25. Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernández-López, M.: The neon method-
ology for ontology engineering. In: Ontology engineering in a networked world, pp.
9–34. Springer (2011)

26. Van Assche, D., Delva, T., Heyvaert, P., De Meester, B., Dimou, A.: Towards a
more human-friendly knowledge graph generation & publication. In: ISWC2021,
The International Semantic Web Conference. vol. 2980. CEUR (2021)

