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Abstract. Deep learning-based plant disease detection has seen promis-
ing advancements, particularly in its remarkable ability to identify dis-
eases through digital images. Nevertheless, these systems’ opacity and
lack of transparency, which often offer no human-interpretable expla-
nations for their predictions, raise concerns with respect to their ro-
bustness and reliability. While many methods have attempted post-hoc
model explainability, few have specifically targeted the integration and
impact of domain knowledge. In this study, we propose a novel framework
that combines a tomato disease ontology with the concept explainabil-
ity method Testing with Concept Activation Vectors (TCAV). Unlike the
original TCAV method, which required users to gather diverse image con-
cepts manually, our approach automates the creation of images based on
relevant concepts used by domain experts in plant disease identification.
This not only simplifies the concept collection and labelling process but
also reduces the burden on users with limited domain knowledge, ulti-
mately mitigating potential biases in concept selection. Besides automat-
ing the concept image generation for the TCAV method, our framework
gives insights into the significance of disease-related concepts identified
through the ontology in the deep learning model decision-making process.
Consequently, our approach enhances the efficiency and interpretability
of the model’s diagnostic capabilities, promising a more trustworthy and
reliable disease detection model.

Keywords: Explainable Artificial Intelligence · Plant Disease Classifi-
cation · Tomato Disease Ontology · Deep Neural Networks.

1 Introduction

Addressing global hunger for a projected 9 billion people by 2050 is a crucial
challenge [31]. However, obstacles like limited crop productivity, environmental
concerns, and rising plant diseases hinder progress in agriculture. Hence, inno-
vative solutions are needed. Artificial intelligence (AI) technologies promise to
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provide such solutions. It offers unprecedented opportunities to enhance various
facets of the field from precision agriculture to advanced automatized crop man-
agement [32]. One particularly promising path is the integration of deep learning,
a subset of AI, in the identification of plant diseases through image data analysis.
This not only enables fast and early disease detection but also paves the way for
more effective and targeted intervention to minimize crop losses.

In recent years, we noticed a surge in the number of works successfully ap-
plying deep learning for plant disease image classification [3,2]. However, the
reception of such models by plant scientists and farmers remains mixed due to
their black-box nature. This uncertainty comes from the limited understand-
ing of the internal process by which such models learn and encode plant disease
traits and features. The absence of transparency throughout the decision-making
process is a crucial concern in numerous critical application domains including
plant disease diagnosis. Hence, explainability of deep learning models becomes
a necessity for the swift realisation of AI practical applications in agriculture.

Different explainability methods have emerged to generate saliency heatmaps
[33,30,26]. They rely mostly on the backpropagation of gradients to assess the
impact of individual pixel changes on the model decision. However,compared to
other fields of application of deep neural networks (DNN), plant disease classifica-
tion carries an additional challenge. Plant diseases can have different symptoms
such as discoloration, lesions, or abnormal growth patterns. These symptoms
can be subtle and may vary depending on the disease stage making it hard to
grasp without expert knowledge. Also, different plant diseases may exhibit sim-
ilar symptoms. Therefore, common explanation methods such as saliency maps
visualisation could not provide pertinent explanation on how much such visual
concepts (i.e, color or symptom abnormalities) influence the model decision.

Hence different concept explanation methods [34,20] giving the attribution
of concepts rather than pixels have been proposed. One of these methods is
Testing with Concept Activation Vectors (TCAV) [20,4]. A concept represents
an abstraction which could range from a simple color to an object or a com-
plex idea [22]. Given any user-defined concept, TCAV detects if that concept is
embedded within the latent feature space learned by the network [22]. Hence,
in the original TCAV method [20], users were required to gather diverse image
concepts manually. This posed a potential challenge, particularly for machine
learning engineers lacking specialised knowledge of the specific domain in study.
We propose to leverage semantic web methods to tackle this issue effectively. An
ontology can provide relevant concepts experts use in identifying plant diseases
and aids in automating the creation of images based on these concepts. This not
only simplifies the concept collection and labelling process but also alleviates the
burden on users with limited domain knowledge. It can also help avoid human
bias, which may influence the choice of concepts to test since it could reflect
the community’s understanding. Moreover, the ontology could define abstract
concepts that might not have direct visual representations but can be inferred
from related concepts.
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In essence, our proposed framework not only automates concept image gen-
eration for the TCAV method but also offers insights into how important these
disease-related concepts identified by using the ontology are for the deep learn-
ing model’s decision-making process. This approach enhances both the efficiency
and interpretability of the diagnostic capabilities of the model. Hence, the aim
of this paper is to provide a semantic aware concept explainability method for
plant diseases based deep learning classification. We choose tomato diseases as a
use case to understand what semantic concepts DNN learns. The tomato disease
image dataset was extracted from the PlantVillage dataset [16].

In summary, our contributions are:

– A new ontology to represent symptoms and abnormalities associated with
tomato diseases.

– Mapping of concepts learnt by DNN within its latent space for plant disease
classification to semantic concept descriptions of plant diseases within the
ontology using CAVs.

– Automated concept labelling and generation such as color and symptoms for
TCAV within the context of plant diseases.

– Analysis of contribution of various disease-related characteristics to the pre-
dictions made by a deep neural network. This provides valuable insights on
the significance of different features in the decision-making process which
could help in improving the accuracy and interpretability of plant disease
predictions.

The remainder of the paper is organised as follows. Section 2 introduces the
possible use cases. Section 3 discusses related work on the use of ontologies
in explainability. Section 4 explains the methods and proposed approach and
Section 5 provides details about the experiment and results. Finally, Section 6
provides the conclusion.

2 Use Cases

Our proposed framework of combining ontology and concept explainability for
tomato disease classification with deep learning can offer several benefits and
use cases. Some of those potential applications could be:

– Explanation of predictions: Our framework can provide explanations for the
predictions made by the deep learning model. Users such as plant experts,
agriculture policy makers, regulators and stakeholders can understand why
a specific classification was made, which is crucial for building trust in the
model.

– Domain-Specific understanding: By incorporating the ontology, the frame-
work can leverage domain-specific knowledge about tomato diseases. This
helps in transferring insights from experts to the model developers which
enhances their understanding of the context and improves model accuracy.

– Identification of relevant features: The framework can highlight the specific
concepts or features within the input data that contributed the most to a
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particular classification. This can be valuable for researchers and practition-
ers to identify key indicators of tomato diseases and improve their collected
dataset.

– Error analysis and improvement: The framework can help in understanding
semantic errors made by the model, indicating which parts of the input data
might have led to a misclassification. This information can guide further
model refinement and training.

3 Related work

In recent years, there has been an increasing interest in understanding and ex-
plaining the prediction behavior of deep neural networks. One of the most pop-
ular methods is the saliency and attribution approaches [33,30,26,27], where the
explanation for the DNN is given as an importance map highlighting the contri-
bution of each feature in its decision. Even though these methods increase the
explainability of the DNN, they are limited in their understandability, leaving
it to the user to interpret such maps. For instance, the importance of a single
pixel in the classification does not bring a meaningful explanation, and it is also
contrived by the number of features [22].
Hence, methods such as TCAV [20] present the use of “human-interpretable
concepts” for explaining DNN networks. Still, no information is provided con-
cerning how these concepts are relevant to the output of the DNN. The user also
needs to collect these concepts as images, making interpreting abstract concepts
hard. Consequently, a lot of researchers argue that an effective explainability of
deep learning models cannot be achieved without the use of domain knowledge
through the integration of semantic web technologies [12].
In [25] the authors suggest employing ontologies as background knowledge frame-
work to facilitate obtaining formulae that interpret the functioning of deep mod-
els. In their work, the network is trained to classify scene objects. Based on the
classification output, they run a DL-Learner on the Suggested Upper Merged
Ontology [24] to generate class expressions that act as explanations. However,
their approach is constrained specifically in its need for labeled data with the
required different concepts.
Similarly, in [12], the authors proposed a neuro-symbolic framework where the
semantics in the knowledge base are aligned with the annotations in the dataset.
The model to explain is a DNN model trained for multi-label image classifica-
tion, and the explanation was generated in a logical language. The specific focus
of their study is the classification of food recipes. A different approach was pro-
posed in [7], where the authors introduced explainable classifiers using domain
knowledge. Their approach involved creating synthetic images of Pizza for train-
ing the DNN based on the specifications outlined in the pizza ontology. Then,
they proposed a method that integrates a DL model with a graph of tensors
automatically generated from description logic assertions extracted from the rel-
evant ontology.
Furthermore, in [28] the authors tried to provide better explanations by map-
ping the internal state of neural network (neuron activations) to the concepts of
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an ontology to find symbolic justification for the output of DNN. This mapping
is achieved by training small neural networks to predict a single concept from
the DNN neuron’s activation. However, this method assumes the presence of
concepts in the images. That’s why they used synthetic image datasets of trains
modeled accordingly to present the needed concepts.
In [8], the authors proposed combining ontology with deep learning cassava dis-
ease classification. However, the ontology was only used to infer diseases based
on simulated sensor observations such as temperature and soil moisture and pro-
vide extra domain knowledge about the classified disease without explaining the
trained model behavior.
While current methods integrating explainability and web semantics have shown
potential, many rely on deep learning models trained on synthetic images fea-
turing a predefined set of concepts, limiting their real-world applicability. Ad-
ditionally, a real-world application is burdened with the need for multi-class
annotation, such as the example in [25]. In our work, we address this limitation
by focusing on explaining a deep neural network trained on real-world images of
plant disease. Our approach involves automatically mapping semantic concepts
to activations learned within the network. The proposed system integrates an
ontology applicable to any images of tomato diseases, enhancing interpretability.
This contributes to a more flexible and practical model. As far as we know, this
is the first approach to automatically explore associating semantic concepts with
visual concepts for plant disease classification.

4 Methods

The framework illustrated in Figure 1 represents our workflow for enhancing
and automatizing concept explainability using knowledge in the form of an on-
tology. In the preparatory phase (pre-runtime) we train the deep neural network
on a set of tomato disease images and we create the ontology. Using only the
image annotations (Target Classes), the ontology can provide necessary con-
cepts, properties and axioms related to visual tomato disease identification.
For example, a bacterial spot tomato disease can be described by its appear-
ance on the leaf with symptoms such as black coloration and spots spreading.
Hence, the bacterial spot target class can be defined using the ontology axiom as
(∃hasSymptom.BacterialSpotsOnLeaf ⊓ ∃hasColor.Brown). Section 4.1 will give
a more detailed explanation of the used ontology. In the following part, we briefly
describe the steps in our framework. First, as described above, a disease concept
ontology is employed to get concepts related to different tomato disease classes
in our image dataset.

Based on the target class label, the ontology provides all important prop-
erties linked to the specified disease class that could be visible in the image.
For example, some of these properties (concepts) could be color or symptom
texture. The generated concept labels (i.e., color brown) are then used to auto-
matically generate corresponding images (i.e., different shades of brown images).
More details on the generation process will be described in Section 4.2. These
generated concepts in the form of images with target class images and random
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Fig. 1. The framework of the proposed method. Our modeled ontology is used to
provide concepts related to the target class (disease label). These semantic concepts
are then used for automatic image generation, and a list of annotated concepts such
as (color, shape, and symptom) are created. Concept classifiers are then trained, and
CAVs and TCAV scores are computed.

images are subsequently employed to derive Concept Activation vectors (CAVs)
[20] and compute the sensitivity score (TCAV score) (see Section 4.3). This helps
us understand how sensitive the trained deep learning model is to these domain-
specific concepts. For instance, we can quantify the influence of the concept
∃hasColor.Brown on the ‘BacterialSpot’ prediction as a single score. In the up-
coming sections, we will describe various parts of our framework in detail. First,
we will introduce our ontology and the modelling process (Section 4.1), then we
will explain the process for generating images related to the concepts (Section
4.2). Finally, we will provide an overview of the TCAV algorithm (Section 4.3).

4.1 Ontology development (ontology based explanation)

This section describes the steps for developing the Tomato Disease Concepts
(TomatoDCO) ontology. It uses OWL for modelling knowledge about classes,
properties and axioms related to phenotype of various tomato diseases. We fol-
low best practice recommendations on ontology engineering [23] to develop this
ontology.

Ontology requirements The first step to developing any ontology is to define
its scope, specifying the aspects it aims to model. In our work, the ontology is
designed to include the tomato plant diseases domain. The ontology should also
provide the different appearances (visual concepts) related to tomato disease.
We integrate the TCAV explainability method with an ontology to provide a
more comprehensive understanding of the model’s decision-making process. The
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ontology will serve as a structured knowledge base, describing and modelling
each disease class’s specific symptoms and abnormalities. These properties will
be then used to generate associated concept images. Following the scope, the
ontology should be able to answer the following competency questions (CQs):

– What are the diseases that tomato plants could have?
– What are the possible symptoms and appearances of tomato disease X?
– What are the diseases that are caused by bacteria, fungi, viruses, or insect

damage?
– What are the diseases if a tomato plant has symptoms/appearance A,B,..?

Ontologies reuse To model our ontology, we follow the recommendation to
start by checking existing ontologies focused on plant diseases. We reuse relevant
elements to help achieve our goal of creating explanations of our trained neural
network, particularly concerning the diseases existing in our image dataset. To
develop our TomatoDCO ontology, we reused and followed the disease hierarchy
from [18,19], presenting a rice disease ontology (RiceDO) that helps identify rice
diseases from existing symptoms in the plant. It was evaluated and assessed by
ontology experts and senior agronomists, where important criteria such as appro-
priateness, consistency, and ontology satisfaction were considered [19]. The other
most pertinent ontologies for our case are Plant Protection Ontology (PPO)[5],
Plant Disease Ontology (PDO)[17], and Phenotype and Trait Ontology (PATO)
[15]. PATO defines various phenotypic traits across different species. These traits
include characteristics like color (e.g., brown, black), temperatures (e.g., high,
low), and symptoms (e.g., swelling)[18]. PDO defines diseases in maize, wheat,
and rice, categorized into bacteria, fungi, and viruses. PPO classifies barley dis-
orders into abiotic and biotic (with further subcategories for bacteria, fungi, and
viruses). RiceDO used and extended PDO, PPO, and PATO ontologies under
the domain of rice diseases. It classifies diseases into bacteria, fungi, and viruses.
Even though these ontologies serve as a valuable reference for comprehending
and categorizing plant diseases and disorders, they are developed to integrate
them with a decision expert system, which differs from our goal. Hence, we reused
concepts that help our aim of providing properties associated with each disease
visual manifestation that could be exploited later as concepts for our explain-
ability algorithm. These existing ontologies (i.e., RiceDO and PDO) also don’t
include information on tomato diseases. Therefore, we adopt their approach of
classifying diseases in defining specific classes relevant to tomato disease.

Concepts identification Since our image dataset is extracted from the PlantVil-
lage dataset [16] available under an open licence [1], we use it as our primary
knowledge source along with [6] to collect information about signs and symptoms
associated with the mentioned diseases for our ontology. The most important
concepts we identified in this step were different types of diseases such as bacte-
rial (i.e., bacterial spot), fungal (i.e., early blight, late blight, leaf mold, septoria
leaf spot, and target spot), viral (i.e., mosaic virus and yellow leaf curl virus) and
diseases due to insect damage such as two-spotted spider mites disease. Diseases
symptoms could be visual abnormalities such as changes in color, for example,
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black, brown, and yellow, and changes in leaf shape. Also, the emergence of
textural changes on the leaf, such as blight or spots.

Classes definition and classes hierarchy The structure of our ontology,
TomatoDCO, is shown in Figure 2 . We have two top-level classes: ‘TomatoDis-
ease’ and ‘Abnormality’ and three object properties (hasColor, hasShape and
hasSymptom).

Fig. 2. The structure of TomatoDCO ontology is divided into three parts: (a) the class
hierarchy of TomatoDCO; (b) the object properties of TomatoDCO; (c) the object
properties descriptions (range and domain); and (d ) an example of axioms representing
concepts of abnormalities of the tomato bacterial spot disease.

A detailed description of these components is given in the following:

– Abnormality: We reuse this class from RiceDO ontology and PPO and extend
it to meet our requirements. This class presents the kind of abnormalities
visually noticed on a plant when it is affected by the disease. These abnor-
malities concepts are important to quantify how sensitive they are for our
plant disease-trained model and to know to which extent our model is learn-
ing the true semantic representation of a disease. As shown in Figure 2, they
include:
• ColorAbnormality: The different color changes that could emerge be-

cause of the disease (e.g., Brown). The terms of colors are mapped to
the existing ones in RiceDO ontology by using owl:equivalentClass, which
is also mapped to the existing ones in PATO.

• ShapeOfLeafAbnormality: the abnormalities that happen to the shape
of the leaf because of the disease.
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• SymptomAbnormality: the symptoms of abnormalities of a leaf affected
by a disease can vary according to the specific pathogen causing the
problem, such as the emergence of spots or patches on the leaf (e.g.,
‘having a bacterial spot symptom on leaves’ can be defined by Bacteri-
alSpotsOnLeaf)

– TomatoDisease: This class classifies the tomato diseases into bacterial, fun-
gal, and viral, like the PDO and RiceDO ontologies, and also adds the class
for diseases caused by insect damage since this could occur in the real world.
It is worth noting also that PDO also lacks information regarding tomato
diseases.

Object properties In our use case, we define three object properties that are
necessary to describe the appearance of each tomato disease and are useful for
extracting the required semantic concepts for the TCAV method.

– hasColor: This property defines a relation from TomatoDisease to ColorAb-
normality.

– hasShape: This property defines a relation from TomatoDisease to Shape-
OfLeafAbnormality.

– hasSymptom: This property defines a relation from TomatoDisease to Symp-
tomAbnormality.

These properties will be then used to axiomatize the various visual abnor-
malities that occur on a leaf when affected by a certain disease.
Concept Definition The appearance of each tomato disease is described in
class description by using equivalent-to relation. For example, a tomato bacte-
rial spot disease can cause the emergence of bacterial spot lesions that develop
randomly on the leaflets, and they turn brown or black and sometimes have a
yellow hallo. In some cases, entire leaves can turn yellow and wilt [6]. Since in
our dataset images of the disease come from different stages, we make sure to
integrate all the possible colours of abnormality. Hence as shown in Figure 2.d,
these could be described as:

BacterialSpot ≡TomatoBacterialDisease⊓
(∃hasSymptom.BacterialSpotsOnLeaf)⊓
(∃hasColor.(Black ⊔ Yellow ⊔ DarkBrown ⊔ LightGreen))⊓
(∃hasShape.ShapeOfLeafAbnormality)

Hence, the TomatoDCO ontology is used to help the mapping between the visual
level (target class image, i.e., bacterial spot) and the semantic level (what is the
disease corresponding concepts (i.e., color, symptom, and shape)). In the follow-
ing section, we describe how these concepts extracted thanks to the ontology
could be defined visually as images.

4.2 Synthetic concepts images generation

The texture of a leaf can provide valuable insights into the health of a plant,
as changes in texture are frequently associated with specific diseases. Symptoms



10 J. Amara et al.

such as wilting, discoloration, or lesions may manifest, affecting the uniformity
of the leaf surface. Hence, we propose visually representing the disease symptom
(hasSymptom) by getting the texture details from the leaf image while excluding
shape and color information. We design three different visual concept genera-
tion methods for texture (hasSymptom), shape (hasShape), and color (hasColor)
separately.

Texture generation method For texture generation, we follow the method
described by Ge et al.[13]. The method is based on initially segmenting the leaf
images from the background. Then, in order to eliminate color information, the
segmented leaf is converted into a grayscale image. Subsequently, the grayscale
image is divided into multiple square patches using an adaptive strategy where
the patch size and location adjust according to the leaf size to include a broader
range of texture information. If the overlap ratio between a patch and the original
leaf segment exceeds a specified threshold τ (set to 0.99 in our experiments,
indicating that over 99% of the patch area belongs to the object) the patch will
be included in the patch pool. Four patches are randomly selected from the pool
and then concatenated into a new texture image to capture both local (individual
patch) and global (entire image) texture characteristics. This generated texture
image corresponds to the target class disease symptom defined in our ontology.
The segmentation step is omitted since we already have a segmented version of
our image dataset. Figure 3 visualises the used method.

Fig. 3. The process for extracting texture. (a) Crop images and compute the overlap
ratio between the 2D mask and patches. Patches with overlap > 0.99 are shown in a
green shade. (b) add the valid patches to a patch pool. (c) is the final texture feature,
the concatenation of k randomly selected patches from the patches pool.

Color generation method We extract the color concepts associated with the
target class (e.g., bacterial spot) using the TomatoDCO ontology that specifies
distinct colors linked to each tomato disease class. Then, we automate the gen-
eration of different images of the same color with varying intensities through
the random perturbation of RGB values within the predefined color spectrum.
These images will be used later with the TCAV method to quantify the model’s
sensitivity to the corresponding color when classifying a particular class.

Shape generation method When a leaf is affected by a disease, its shape
witnesses different changes. Some diseases cause damage along the edges of the
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leaves, resulting in distortion and curling. Hence, we visualize the shape abnor-
mality concept by extracting only the shape edge using binary segmentation. An
example is presented in Figure 4.

Fig. 4. Example of extracted shape contours

4.3 Testing with Concept Activation Vectors (TCAV)

In this section, we provide a brief overview of CAVs and outline the approach
employed in this study to compute TCAV scores. These scores measure the influ-
ence of a semantic concept on the predictions made by DNN. The TCAV method
was proposed by kim et al. [20] to explain deep neural models without any re-
training. A key component within TCAV is the concept activation vector (CAV)
vlc, a vector representation of a concept within a specified convolutional layer
l of DNN. To identify CAV in layer l, a set of positive and negative examples
representing concept and non-concept (i.e., random) instances is needed. These
examples are represented in the form of images and a binary linear classifier
is trained to distinguish between them. The vector orthogonal to the decision
boundary separating the two classes, i.e., the vector pointing in the direction of
the representations of the concept images, is the CAV. To assess the impact of a
CAV on a class of input images, the authors proposed the TCAV score metric.
It uses directional derivatives, denoted as SC,k,l(x), , to gauge the contextual
sensitivity of a concept across an entire input class, offering comprehensive ex-
planations. The formula for calculating the TCAV score is as follows:

TCAVQC,k,l
=

|x ∈ Xk;SC,k,l(x) > 0|
|Xk|

(1)

Where k denotes the class labels, Xk represents all inputs, and SC,k,l(x) is
the directional derivative of a sample’s activation x from layer l concerning class
k and concept C. The TCAV score calculates the ratio of the class k’s inputs
positively influenced by concept C. To make sure that only meaningful CAVs are
taken into account, a statistical significance two-sided t-test is performed [20].

5 Experiments and results

5.1 Dataset and trained model

All experiments were performed using the Inception-V3 [29,4] model fine tuned
on the tomato images from the PlantVillage dataset [16]. The model was created
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and loaded with pretrained weights on the ImageNet dataset [11] and top new
layers were added. They consist of three dense layers with corresponding dropout
layers. For training and optimizing the weights on the tomato disease dataset,
we froze the first 51 convolutional layers and made the rest trainable for Incep-
tionV3. Training optimization was carried out via a stochastic gradient descent
optimizer with a learning rate of 0.0001 and momentum of 0.9. We used a batch
size of 20 and 20 epochs for training. We use data augmentation techniques to
increase the dataset size in training and solve the class imbalance while including
different variations. These variations consist of transformations such as random
rotations, zooms, translations, shears, and flips to the training data as we train.
The performance of the trained models is evaluated using recall, precision, and
accuracy metrics [10].

Fig. 5. Sample images from the PlantVillage Dataset. (a) Bacterial Spot, (b) Early
Blight, (c) Healthy, (d) Late Blight, (e) Leaf Mold, (f) Septoria Leaf Spot, (g) Two-
spotted Spider Mites, (h) Target Spot, (i) Mosaic Virus, and (j) Yellow Leaf Curl Virus.

The total number of images is 18,160, divided into ten classes (nine diseases
and a healthy class). The data was separated into three sets, containing 80% of
the data in the training set; the remaining 20% were divided between the testing
and validation sets. Figure 5 presents one example of each disease class. The
trained model achieved the following training, validation and testing accuracies,
respectively: 0.98, 0.92 and 0.92.

Table 1 shows the precision, recall, and F1-score for each class. The model
was implemented using Keras [9], and was saved for subsequent interpretability
analysis. We experimented on a server with a GPU that consists of two NVIDIA
Tesla V100 with 128 GB of RAM.

5.2 Experimental setup

In this work, our aim is to study the correlation between concepts derived from
a domain ontology modelling the knowledge about diseases and those learned
within the activation of the neural networks. For example, if a neural network
is trained to identify late blight disease, then ontological concepts representing
the disease like ∃hasColor.Black and ∃hasSymptom.Blight should be important
for the decision. It is worth noting that none of these concepts were part of the
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Table 1. Per class precision, recall, F1-Score for the test set Class.

Class Label Sample Count Precision Recall F1-score
Bacterial Spot 191 1 0.64 0.78
Early Blight 119 0.99 0.62 0.76
Late Blight 178 0.89 0.99 0.94
Leaf Mold 77 0.96 0.92 0.94
Septoria Leaf Spot 198 0.9 0.96 0.93
Two-spotted Spider Mite 177 0.87 0.99 0.93
Target Spot 142 0.7 0.96 0.81
Yellow Leaf Curl Virus 534 0.99 1 0.99
Mosaic Virus 37 0.97 0.89 0.93
Healthy 163 0.98 0.99 0.98

predefined class labels of the network; rather they were all derived through on-
tology reasoning. Hence, the first step of our approach is exploiting the ontology
to identify and automatically generate concepts specific to each disease class, as
described in Section 4.2.

The subsequent step involves utilising the generated images that represent
each concept for training the concept activation vectors (CAVs). To train CAVs,
a set of 30 images per concept was generated. The selection of this number aligns
with the recommendation in the original TCAV paper [20], where it is asserted
that such a number suffices to learn CAVs. For the target classes, we randomly
chose 30 images for each from the training set. Images for creating ∃hasSymptom
concepts were selected randomly from the test set which the model was not
trained on. We used the “mixed_8” bottleneck layer of the InceptionV3 model
for these experiments. As demonstrated in [20,14], initial layers are better at
capturing textures and colors while later ones are better at recognizing objects;
the choice of the “mixed_8” layer balances between these considerations. We
used images of healthy tomatoes without any presence of disease as random
(i.e., non concept) images. We believe this choice allows training CAVs with a
better fine-grained recognition. The TCAV score is used to evaluate the concept’s
importance to a specific target class. To check statistical significance of learned
concepts, we trained an additional 70 random CAVs. The distribution of random
concept TCAV scores and actual concept TCAV scores was then compared by
conducting a two-sided t-test [21] with (α = 0.05) to assure significance of the
found CAVs. In the results section, statistical insignificance is represented by
stars. Our code and ontology can be accessed on GitHub 3.

5.3 Findings and analyses

To evaluate our approach, we will concentrate on the quantitative evaluation
of TCAV scores. Figure 6 presents the different sensitivity score (TCAV) high-
lighting the contribution of the semantic concepts to their relevant correspond-
ing neural classification. Essentially, TCAV quantifies the impact of a given

3 https://github.com/fusion-jena/XAI_TCAV_ONTO

https://github.com/fusion-jena/XAI_TCAV_ONTO
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Fig. 6. Conceptual importance (TCAV scores) for the different disease semantic con-
cepts for each class

concept on a specific target class. For instance, in the case of Tomato Mo-
saic Virus, the results show a high TCAV score for all the semantic concepts
such as ∃hasColor.Yellow (0.97) and ∃hasSymptom.MosaicPatchesOnLeaf (0.9).
Contrarily, for the disease Target Spot the model did not learn the concept
∃hasSymptom.TargetSpotsOnLeaf, which may explain the low precision of the
class as shown in Table 1. This suggests that the model may not be optimal for
robustly detecting the TargetSpot disease and that gathering more training data
with clear symptom texture existence could enhance the results. In contrast, for
Septoria Leaf Spot, even though the symptom concept was not important, the
abnormalities in concepts like hasColor and hasShape were sufficient for the
model to identify the class. Additionally, for the class ‘Two-spotted spider mite’,
none of the disease’s semantic concepts made a significant contribution. This
suggests that the model may not have effectively learned these important se-
mantic concepts associated with this disease class. However, the class achieved
a precision of 0.8, indicating that the model is learning to identify this class
through another bias in the dataset. This insight highlights the need for a closer
examination of the class and the model.

The results further highlight the significance of color concepts for different
disease classes, supporting the findings of [16] where they observed an accu-
racy drop when the model was trained on grayscale images. In summary, these
findings provide insights into the contribution of different semantic concepts in
the decision of the model which shows to which extent the model is consistent
with domain knowledge. Our approach not only relates the classified diseases
to their symptoms and signs but also tries to quantify the contribution of these
symptoms to the model decision.
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6 Conclusion

With this work, we contribute to improving the explainability, dependability and
trustworthiness of deep learning models by adding expert knowledge through an
ontology. For our implementation, we focus on the identification of plant diseases
as a use case. Our novel approach automatically generates concepts related to
observable disease features using the ontology. This lets users peek into the model
and see how its results depend on these concepts, all without needing to manually
collect concepts. Through experimental evaluation, we showed the sensitivity of
the model to these concepts. By formalizing expert knowledge in an ontology,
we can enhance our comprehension of the relationships between various concepts
within a model and also make the examination and correction of misclassifica-
tions and biases easier. We believe that our approach could be easily extended to
other domains due to different points. First, our ontology is built upon a concep-
tual framework that involves color, symptom (texture), and shape abnormalities.
This framework is not specific to tomato diseases and can be adapted to cover
characteristics in other plant diseases or domains. Second, our ontology design is
modular and flexible. Separating disease characteristics and types into distinct
modules made the inclusion of new diseases and their corresponding specific con-
cepts easier. Third, the most important features when describing images such
as leaves or other objects are shape, color, and texture. Our proposed approach
for generating images for such concepts is domain-independent, which shows its
adaptability behind the current use case. Despite our findings, we acknowledge
some challenges, like the difficulty of capturing all expert knowledge in an ontol-
ogy. Also, further detailed tests with a high-quality dataset are needed for more
comprehensive interpretation of the TCAV scores for this particular use case.

In future work, we aim to test our approach on more challenging plant dis-
eases datasets where leaves could be infected by more than one disease. We plan
also to consider how combining neural and semantic representation via knowl-
edge graphs can be generalised to other problems such as object detection and
image classification. The explainability framework can be integrated into a de-
cision support system, providing actionable insights to farmers and stakeholders
for disease management and crop protection.
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