
OntoEditor: Real-time Collaboration via
Distributed Version Control for Ontology

Development

Ahmad Hemid1, Waleed Shabbir2, Abderrahmane Khiat2, Christoph Lange1,4,
Christoph Quix1,3, and Stefan Decker1,4

1 Fraunhofer FIT, Data Science and Artificial Intelligence, Germany
{ahmad.hemid,christoph.lange-bever,christoph.quix,stefan.decker}@fit.fraunhofer.de

2 Fraunhofer IAIS, Enterprise Information Systems, Germany
{waleed.shabbir,abderrahmane.khiat}@iais.fraunhofer.de

3 Hochschule Niederrhein, Germany
christoph.quix@hs-niederrhein.de
4 RWTH Aachen University, Germany

lange@cs.rwth-aachen.de,decker@dbis.rwth-aachen.de

Abstract. In today’s remote work environment, the demand for real-
time collaborative tools has surged. Our research targets efficient col-
laboration among knowledge engineers and domain experts in Ontology
development. We developed a web-based tool for real-time collaboration,
compatible with GitLab, GitHub, and Bitbucket. To tackle the challenge
of concurrent modifications leading to potential inconsistencies, we inte-
grated an Operational Transformation-based real-time database. This in-
tegration enables multiple users to concurrently collaborate to build and
edit their ontologies, ensuring both consistency and atomicity. Further-
more, our tool enhances user experience by providing meaningful syntax
error messages for ontologies expressed in various RDF serialization for-
mats. This streamlined the manual correction process. Additionally, we
established a reliable synchronization channel for users to allow pulling
and committing changes to distributed repositories for their developed
ontologies. Yielding promising results, our evaluation focused on two key
aspects: first, assessing the tool’s collaborative editing consistency via an
automated typing script; second, conducting a comprehensive user study
to evaluate its features and compare its functionalities with similar tools.

Keywords: Real-time collaboration · RDF serialization · Version Con-
trol Systems · Git integration · Error detection · Syntax validation ·
Ontology development.

1 Introduction

The vision of the Semantic Web, fostered by the World Wide Web Consortium
(W3C), aims to transform the web into a machine-interpretable platform, akin
to a global database [1]. However, even with all research efforts conducted to

2 Hemid et al.

achieve this goal, the current landscape of the web lacks an interconnected data
framework, leading to fragmented data confined within individual applications.

At the heart of the Semantic Web lies the Resource Description Framework
(RDF) [2], pivotal for modeling data and its relationships. Yet, contemporary
applications grapple with challenges such as limited real-time collaboration and
inadequate syntax validation within RDF-based systems, demanding an inte-
grated and comprehensive solution.

This paper introduces OntoEditor, an innovative Online Collaborative On-
tology Editor designed to revolutionize real-time collaboration across various
RDF serialization formats. By harnessing Version Control Systems (VCS) such
as GitHub, GitLab, and Bitbucket, OntoEditor offers users live syntax valida-
tion and collaborative editing features, effectively tackling inherent limitations
in current systems, particularly in conflict resolution.

OntoEditor fills a critical gap in the domain of collaborative ontology de-
velopment, offering a robust platform that seamlessly integrates real-time col-
laboration capabilities with thorough syntax validation across multiple RDF
serialization formats. Through this endeavor, we aim to alleviate the persistent
challenges faced by users in effectively collaborating on ontology projects.

This paper is structured as follows: Section 2 presents a motivational exam-
ple, while Section 3 explores related works, offering a comparative analysis of
existing solutions concerning OntoEditor. In Section 4, an overview of OntoEdi-
tor, including its workflow and features, is provided. Section 5 details its imple-
mentation and the technologies employed. The evaluation, conducted through
experimental tasks and a user study, is presented in Section 6. Section 7 discusses
the current limitations of OntoEditor, while Section 8 explores strategies for its
sustainable adoption. Finally, the paper concludes in Section 9, with potential
avenues for future work highlighted in Section 10.

2 Motivation

Suppose John, along with his colleagues Robert and Lisa, aims to develop an
ontology together, illustrating the need for real-time collaboration as depicted in
Figure 1. Their expertise in ontology engineering leads them to prefer plain text
editors and VCS such as Git1 for collaborative ontology development. However,
existing tools lack efficient collaboration, communication, and real-time syntax
error detection. This results in a cumbersome and error-prone process where
users must separately write, check syntax, communicate changes, and repeat
this cycle, causing inefficiency and errors.

Research from Queens University of Charlotte highlights that about 75%
of employers highly value teamwork and collaboration, emphasizing the need
for streamlined collaboration tools2. This inspired us to devise a solution that
enables multiple users to collaborate seamlessly during ontology development
without constant syntax-checking interruptions.

1 https://git-scm.com/
2 https://blog.bit.ai/collaboration-statistics/

https://git-scm.com/
https://blog.bit.ai/collaboration-statistics/

OntoEditor: Real-time Collaboration for Ontology Development 3

Fig. 1:Collaboration Scenario. An example motivating collaborative ontology
development with a built-in syntax validator. Both Robert and Lisa seek to work
seamlessly with John without requiring software downloads or installations.

Digging deeper into the scenario presented in Figure 1, John, Robert, and
Lisa aim to collaborate on an ontology. They can create a new ontology or import
an existing one from VCS such as GitHub. John initiates collaborative editing,
sharing the link with his colleagues, enabling real-time simultaneous document
viewing and tracking of each user’s edits.

With the syntax checker enabled, any modifications trigger instant error de-
tection visible to all users, fostering discussions and corrections in real-time via
a shared chat. This approach ensures everyone’s awareness of errors and each
other’s editing progress.

The final step involves users synchronizing their work with the remote repos-
itory. Only authorized users can commit changes, ensuring controlled access and
ownership permissions within the repository.

3 Related Work

This section delves into collaborative ontology development, ontology synchro-
nization with VCS, and tools supporting various RDF formats and validation.

3.1 Parsing RDF and Syntax Checking

Numerous online and desktop tools specialize in validating RDF data and sup-
porting syntax checking. The W3C RDF validation tool [11] primarily focuses
on parsing and validating RDF/XML1 exclusively. Meanwhile, isSemantic RDF

1 https://www.w3.org/TR/rdf-syntax-grammar

https://www.w3.org/TR/rdf-syntax-grammar

4 Hemid et al.

Tools [7] offer syntax checking and format conversions among other visualization
and generation services but lack comprehensive support for collaborative editing
or VCS integration. Our objective revolves around supporting ontology develop-
ment within distributed VCS, a feature noticeably absent in existing tools.

Table 1: Feature Comparison. OntoEditor, TurtleEditor, and WebProtégé for
Collaborative Ontology Development.

Feature Tool

OntoEditor TurtleEditor WebProtégé

Real-time Collaboration ✓ × ✓

Textual RDF Editor ✓ ✓ ×

RDF Serializations
Turtle,

RDF/XML,
JSON-LD

Turtle Turtle,
RDF/XML

Integration with Git
✓ ✓ ×

(GitHub, GitLab,
Bitbucket)

(GitLab only) (Own Protégé
Server)

Conflict Resolution ✓ × ✓

Export/Download Option ✓ × ✓

3.2 Ontology Editors

Our exploration identified tools with collaborative capabilities but notable limi-
tations. Existing tools often bound ontology development to specific formats or
lack crucial collaboration features. Table 1 compares OntoEditor with similar
tools such as TurtleEditor and WebProtégé. TurtleEditor [10] specializes in syn-
tax checks for the Turtle RDF format1 but confines users to a single format and
a specific repository service, limiting real-time collaboration. WebProtégé [13]
enables collaboration through a server-based approach but mandates hosting on
its servers, necessitating user accounts for collaboration, and it does not support
text editing. VocBench [12] supports collaborative SKOS thesaurus editing but
involves a complex deployment setup.

Taking from platforms such as Overleaf2, OntoEditor stores content in a
database, generating a unique shareable link. This link fosters collaboration by
inviting contributors to work within the same document, offering users the flex-
ibility to choose between individual or collaborative work based on their prefer-
ences.

OntoEditor fulfills the ongoing demand for a versatile tool enabling ontology
development in any RDF format, syntax parsing, real-time collaboration, and
seamless integration with VCS.

1 https://www.w3.org/TR/turtle
2 https://www.overleaf.com/learn

https://www.w3.org/TR/turtle
https://www.overleaf.com/learn

OntoEditor: Real-time Collaboration for Ontology Development 5

4 OntoEditor: a Collaborative Ontology Editor

OntoEditor is an Online Collaborative Ontology Editor, built on Distributed
VCS. It aims to support collaborative ontology development across different
RDF serialization formats: Turtle, JSON-LD3, and RDF/XML. The following
discusses its processing workflow as well as the integrated components for em-
powering collaborative editing.

4.1 OntoEditor Workflow

Figure 2 provides an overarching view of the fundamental steps within OntoEd-
itor. The process commences with user authentication in Git, where credentials
are provided. Upon successful authentication, users gain access to remote repos-
itory data, including repository names, branches, and file details. Subsequently,
upon file and RDF serialization format selection, the editing phase commences.

The unique project link allows new users to view the names and cursor po-
sitions of those already connected to the document. This collaborative environ-
ment enables multiple users to concurrently edit RDF content, with every change
being visible to all collaborators. Additionally, users have the option to individ-
ually enable or disable the syntax checker. When activated, the system parses
the RDF document, identifying and displaying any syntax errors present. Upon
completion of changes, users can commit and push their updates and changes to
the distributed repository.

4.2 Collaborative Editing Components

OntoEditor encourages collaborative ontology development among multiple users,
driven by essential components that facilitate seamless interaction:
Customizable Editor: CodeMirror1 as a JavaScript-based Editor was selected
for its robust programmable API and advanced editing capabilities such as auto-
indentation, auto-completion, syntax highlighting, and search functionalities. As
an open-source editor widely used in various projects, CodeMirror inherently
supports syntax highlighting for over a hundred programming languages, includ-
ing Turtle, XML, and JSON-LD. Crucially, it enables collaboration by detecting
changes through onChange events.
Real-Time Communication Channel: Real-time communication is vital for
collaborative editing. WebSocket [5] technology enables immediate and bidirec-
tional data exchange between web browsers (clients) and servers, facilitating
seamless interactions. Upon initiating document editing, a WebSocket connec-
tion is established. This channel relays all modifications to the server, managing
live chat, user details, cursor positions, and notifications among connected users.
ShareDB: To enable seamless collaboration, a real-time database was impera-
tive. After careful research, ShareDB2 emerged as the optimal choice. ShareDB,

3 https://www.w3.org/TR/json-ld11
1 https://codemirror.net/
2 https://share.github.io/sharedb/

https://www.w3.org/TR/json-ld11
https://codemirror.net/
https://share.github.io/sharedb/

6 Hemid et al.

Fig. 2: OntoEditor’s Workflow. The diagram illustrates the authentication
process in Git, file selection, and the initiation of RDF editing. It highlights the
collaborative nature facilitated by a unique shareable link, enabling simultaneous
editing and syntax checking. Completed changes can be committed and pushed
to the remote repository.

built on Operational Transformation (OT) [4], operates as a real-time in-memory
database. It stores JavaScript objects on the server and facilitates their sharing
among multiple clients through WebSockets. Documents in ShareDB include
properties such as Version (incrementing from 0), Type (e.g., OT-text, OT-
json1), and Data which is the intended content for storage within the database.

Algorithm 1 was designed to operationalize this approach. Upon a user’s initi-
ation of RDF document editing, a new document with an initial version of 0 and
the RDF data to be inserted is created in ShareDB. If the document already
exists in ShareDB, its existing path is returned to the user. For Operational
Transformation, we leverage Plain text Operational Transformation1. This Op-
erational Transformation type is utilized for editing plain text documents and
supports operations including skipping forward N characters, inserting str at the
current position, and deleting N characters at the current position.

Clients subscribe to ShareDB documents, updating the document’s state
with insertions and deletions by modifying the index position and content. Each
change increments the version number and is stored in ShareDB. These opera-
tions are transmitted over WebSockets, updating local document states.
RDF Validator: OntoEditor validates RDF serialization formats—Turtle, RDF/
XML, and JSON-LD—in real-time, allowing immediate syntax error detection
while typing. Users can toggle validation on or off as needed, with the tool pro-

1 https://github.com/ottypes/text

https://github.com/ottypes/text

OntoEditor: Real-time Collaboration for Ontology Development 7

Algorithm 1: The pseudo-code of Collaboration

Data: inputFile, repoDetails
Result: docChanges,users

1 users = []
2 if editingMode then
3 path = startEditing(inputFile,repoDetails)
4 users.push(name, cursorPosition)
5 doc = webSocket(path)
6 if doc.subscribe then
7 Initialize CodeMirror(doc.value)
8 if doc.change then
9 user.updatePosition(userCursor)

10 if addedText then
11 sharedb.submitOp([position, addedText])
12 else
13 deletedText
14 sharedb.submitOp([position, length.deletedText])
15 doc.version += 1

16 if sharedb.receivedOp then
17 if op == sender then
18 return
19 else
20 if op == insertion then
21 codeMirror.replaceRange(newData,position)
22 if op == deletion then
23 codeMirror.removeRange(’ ’, startPosition, endPosition)

24 Function startEditing(inputFile, repoDetails)
25 if File exists in shareDB then
26 shareLink = (repoDetails) + sharedb.fetchDoc()
27 return shareLink

28 else
29 shareLink = (repoDetails) + sharedb.createDoc(inputFile)
30 return shareLink

31 end

viding coherent error messages. Even with syntax errors, users retain the ability
to push file changes to the remote repository.

5 Implementation

Considering Figure 3, OntoEditor comprises three key modules, each serving a
distinct role within the system. The initial module manages communication with
remote repositories, while the second module is designed to enable real-time col-
laboration among users. Finally, the third module is dedicated to comprehensive
syntax validation.

8 Hemid et al.

Fig. 3: OntoEditor’s Modules. OntoEditor comprises three modules: Reposi-
tory Communication, Collaboration, and Syntax Validation.

5.1 Repository Communication

We utilize GitHub, GitLab, and Bitbucket’s APIs for web-based RDF editing,
bypassing the need for local Git installation. Authentication requires a username
and access token for GitHub and GitLab, while Bitbucket needs an access token
with an empty username. Users access repositories and branches and filter files by
formats such as ttl, rdfxml, etc. Available actions include file operations, commits
(requiring authentication), and link sharing.

To manage conflicts or concurrent edits, we monitor file history for new
commits every 60 seconds. Conflict resolution leverages the Mergely JavaScript
library1, offering users a side-by-side comparison, shown in Figure 4.

Fig. 4: Git Conflict Resolution Merge View. A user interface showcases
the user’s current document version on the left and the changes retrieved from
the hosted Git repository on the right. It facilitates Git conflict resolution by
displaying the most recent version of the document if new changes exist.

1 https://github.com/wickedest/Mergely

https://github.com/wickedest/Mergely

OntoEditor: Real-time Collaboration for Ontology Development 9

5.2 Collaboration

This module utilizes Socket.io2 over WebSockets for real-time editing, cursor
tracking, and multi-user communication. Socket.io enables bi-directional, event-
driven client-server communication via JavaScript libraries, aimed at simplifying
the complexity of editing operations into independent microservices.
Collaboration Service and File Storage in shareDB: To enable real-time
collaboration, the file content is stored in our Database. Users initiating edits on
the client-side trigger a REST API call to the server, providing Git authentica-
tion parameters, file details, and the chosen RDF serialization format. ShareDB
is initialized on the server, allowing connections via a separate port. We uniquely
identify each file using SHA-1 hashes [3], mirroring how Git stores file informa-
tion. The hash becomes the document’s ID in shareDB. If the document doesn’t
exist, we create it with an initial version of 0, storing both current data and
individual operations.

A unique URL path is generated for each file, containing vital information
such as ProjectID, repository details, branch, file name, and RDF serialization
format. This link is sent to the client for editing. If the document exists, we send
its path to the user, enabling collaboration by sharing the link.

The data is stored in MongoDB for persistence. Locally, ShareDB’s in-memory
database suffices. Real-time communication begins when a user starts editing, es-
tablishing a WebSocket session to the server. Users’ names, cursor positions, and
document details are maintained on the server and broadcasted to all connected
clients. An integrated chat widget allows communication within the system.
Document Updates and Conflict Resolution: ShareDB, as a real-time
database, ensures users view the latest document state. Operational Transforma-
tion resolves conflicts, managing concurrent editing. CodeMirror’s API triggers
onChange events for any insertion or deletion in the editor.

Insertion operations, demanding an index position and added text, elevate the
document’s version, while deletions require the index and deletion amount, simi-
larly increasing the version. These actions, applied in ShareDB, are broadcasted
to all clients and locally updated. Insert operations synchronize by replacing
text using CodeMirror’s replaceRange function, while deletions are executed by
replacing text with an empty string. This process guarantees consistent real-time
collaboration across multiple users.

5.3 RDF Validation and Error Notification

OntoEditor utilizes JavaScript parser libraries for real-time validation of var-
ious RDF serialization formats (Turtle, RDF/XML, JSON-LD). Users receive
instantaneous error messages and can rectify syntax errors seamlessly during
collaborative editing of RDF data.

2 https://socket.io

https://socket.io

10 Hemid et al.

To validate RDF, established parsers are employed: N3.js1 for Turtle, RDF/
XML streaming parser2 for RDF/XML, and JSON-LD streaming parser3 for
JSON-LD. These parsers operate streamingly, ensuring efficient handling of large
documents with limited memory.

During the editing process, users can select their desired format. The chosen
parser is activated accordingly, integrated with an onChange function to check
syntax while typing automatically. The syntax checker can be toggled on or off,
with default activation. The syntax checker identifies the format from the URL
path and calls the corresponding parser. Parsing occurs in a streaming manner,
providing parsed triples and highlighting any syntax errors. Meaningful error
messages are displayed atop the editor for immediate user visibility. Upon error
correction, a Syntax correct, all triples parsed successfully message is shown.

Fig. 5: Real-Time Collaboration Snapshot. Robert, Lisa, and Bob are con-
currently editing, each represented by their cursor positions. Additionally, they
are engaging in communication through an integrated chat widget.

6 Evaluation

OntoEditor underwent comprehensive evaluation through both functional testing
and a user study. The functional tests involved experimenting with collaborative
editing via an automated typing script on RDF Turtle documents. In contrast,
the user study specifically targeted participants from a computer science back-
ground to assess their experiences and feedback.

6.1 Functional Testing

This task assesses collaborative editing performance by multiple automated users
on RDF Turtle documents. It tests real-time collaboration with consistency using
various browsers and clients.
1 https://github.com/rdfjs/N3.js
2 https://github.com/rdfjs/rdfxml-streaming-parser.js
3 https://github.com/rubensworks/jsonld-streaming-parser.js

https://github.com/rdfjs/N3.js
https://github.com/rdfjs/rdfxml-streaming-parser.js
https://github.com/rubensworks/jsonld-streaming-parser.js

OntoEditor: Real-time Collaboration for Ontology Development 11

Objective and Experiment Configuration: The testing aimed to assess real-
time collaborative editing under simultaneous input from multiple users sub-
scribed to the same document. Conducted on a Windows 10 machine with a 3rd

Gen Intel Core i7-3630 CPU, 2.40 GHz, and 8 GB RAM, the web application
was tested across various browsers: Chrome, Firefox, and Opera.
Procedure: Five clients, denoted as tabs A to E, were concurrently opened
and tasked with typing different sections of an RDF Turtle file using automated
scripts. Initially, an empty document shareable link was generated and accessed
by these five clients across separate browser tabs (one client per tab). To assess
cross-browser functionality, three clients were opened in Chrome across three
tabs, one in Firefox, and one in Opera.

Each client was associated with a distinct segment of the RDF turtle file,
enabling simultaneous collaborative editing. To automate typing, a code snip-
pet tailored for each client was utilized. This script, available in our GitHub
repository1, assigned separate instances of the ontology to each client from the
shared RDF file. The script prompts for RDF input and Starting time for exe-
cution. Employing an interval function, the script simulates the typing process
at variable speeds until completion of the assigned code segment
Results and Discussion: During the experiment, all clients worked concur-
rently without conflicts, ensuring a consistent document state and robust cross-
browser compatibility. Functional tests validated key functionalities, including
connection to a unique shareable project link, display of connected users, indi-
cation of cursor positions, simultaneous typing by multiple clients, maintenance
of a conflict-free document state, and verification of cross-browser compatibility.
Client identities from A to E were assigned, and in Figure 6, client A’s browser
view exhibits connected clients’ names and their cursor positions. The conducted
typing script affirmed successful and seamless collaboration, enabling consistent
and conflict-free document production among all connected clients.

6.2 User Study

The user study presents a comparative analysis of the user experiences between
OntoEditor, TurtleEditor, and WebProtégé. Additionally, it comprehensively
outlines the evaluation process steps. To gauge the accessibility of our tool, we
employed the Concurrent Think-aloud method. This method involved observ-
ing participants closely as they performed tasks, allowing us to capture their
real-time thoughts and insights.
Participants & Procedure: Nine participants, varying in expertise from ba-
sic to advanced in computer science ontology and modeling, took part in the
evaluation. They possessed some familiarity with VCS, particularly Git. The
evaluation included comprehensive introductions to OntoEditor, TurtleEditor,
and WebProtégé for a comparative analysis. Tasks were assigned across all three
tools, with continuous monitoring of participants’ approaches to solve each task.
Participants could access guidance in the Help section as needed. After complet-
ing tasks, the focus shifted to evaluating user comments on tool usability rather

1 https://w3id.org/ontoeditor

https://w3id.org/ontoeditor

12 Hemid et al.

Fig. 6: Snapshot of Functional Testing Result: Client A’s browser interface
displays real-time status after executing an automated typing script. Visible
are the names of the four connected users, along with their respective cursor
positions, synchronized within the editor.

than just result accuracy. Participants offered suggestions for tool improvement,
contributing to future iterations. A survey featuring scaled questions (from 1 to
5) was used to gather detailed user feedback.
Tasks & Questionnaire: The evaluation encompassed nine participants with
varying levels of expertise in computer science and Git. They received compre-
hensive introductions to OntoEditor, TurtleEditor, and WebProtégé for com-
parative analysis, followed by tasks assigned across all three tools. Continuous
monitoring tracked their approaches, with Help section guidance available.

Tasks were designed to cover activities from token-based authentication to
the final Git commit, executed by three groups. Participants freely chose their
preferred GIT VCS platform (GitHub, Bitbucket, or GitLab), completing similar
tasks with minor variations in defining properties and instances within different
base examples. These base examples in Figure 7 were extended using TurtleEd-
itor and WebProtégé for comparison.

Post-tasks, participants completed an electronic questionnaire, including the
USE Questionnaire1 utilizing a Likert scale. It assessed usefulness, ease of use,
ease of learning, and satisfaction. The second section explored specific areas,
gathering insights into individual service importance within OntoEditor. Open-
response questions captured participant perceptions of pros and cons, influenc-
ing future service integration possibilities. The detailed survey questionnaire is
available in our project’s repository [6].

1 https://garyperlman.com/quest/quest.cgi?form=USE

https://garyperlman.com/quest/quest.cgi?form=USE

OntoEditor: Real-time Collaboration for Ontology Development 13

Fig. 7: Participants Group Assignments. Tasks included defining new prop-
erties and instances using those base examples.

Results: Participants efficiently completed tasks within 15 to 20 minutes. Post-
study, the USE questionnaire revealed high ratings for OntoEditor: usefulness
(4.45), ease of use (3.98), ease of learning (4.29), and satisfaction (4.41), indi-
cating substantial usability favorability. Figure 8 shows participant ratings on
OntoEditor, emphasizing high ratings for Collaboration and Syntax Validation.
Key findings highlighted high satisfaction with collaboration for multi-user tasks,
positive feedback on syntax checking across RDF formats, and suggestions for
integrating a user login system and favoring single sign-on for authentication.

(a) (b)

(c) (d)

Fig. 8: User ratings. User Satisfaction Assessment of OntoEditor.

Comparing OntoEditor, TurtleEditor, and WebProtégé: OntoEditor scored
95%, outperforming both in collaboration and syntax validation. TurtleEditor
integrates with VCS but lacks real-time collaboration, while WebProtégé sup-

14 Hemid et al.

ports collaboration but lacks synchronization with repositories and textual RDF
editing compared to OntoEditor.

Fig. 9: Comparative study results. Showcasing OntoEditor’s higher score of
95%, TurtleEditor’s 84%, and WebProtégé’s 82% in terms of collaboration and
syntax validation.

7 Limitations

Throughout project testing tasks and user reviews, OntoEditor has revealed cer-
tain limitations, highlighting potential areas for improvement and future tasks:

1. Lack of user authentication: OntoEditor lacks its own authentication
and user management system for controlling user access and permissions.

2. No support for ontologies stored locally on file systems: The pri-
mary focus of OntoEditor was to resolve Git conflicts, thus its utilization for
ontology development on local file systems was not incorporated.

3. Inability to edit multiple files via a single project link: OntoEdi-
tor’s current incapacity to simultaneously edit multiple files through a single
project link hampers collaborative efficiency, especially when parallel edits
across multiple files are necessary.

4. Limited support for serialization formats: While OntoEditor robustly
supports ontology development, its compatibility remains restricted to spe-
cific serialization formats, including Turtle, RDF/XML, and JSON-LD.

8 Adoption

An outstanding attribute of OntoEditor is its seamless integration potential
within VoCoREG [8], a comprehensive ontology development environment. Vo-
CoREG augments OntoEditor by offering an array of functionalities such as
Ontology Metrics, Evolution details, Query services, and Visualization of On-
tologies. The integration promises an efficient platform for real-time collaborative
editing of various RDF serialization formats among multiple contributors.

OntoEditor: Real-time Collaboration for Ontology Development 15

9 Conclusion

This paper introduces OntoEditor, a collaborative ontology development tool
leveraging Version Control Systems. Its core modules—Repository Communi-
cation, Collaboration, and RDF Validation—are integral to its functionality.
The Repository Communication module integrates RESTful APIs from GitHub,
GitLab, and Bitbucket, ensuring direct user-repository interaction and conflict
prevention. The Collaboration module, a separate microservice, enables real-
time collaboration via WebSocket, supported by ShareDB for storage. Unique
links allow simultaneous editing, coupled with an in-built chat feature for user
communication. The RDF Validation module ensures error-free ontology devel-
opment by real-time syntax validation for RDF serialization formats, enhanc-
ing typing accuracy. Empirical evaluations highlighted OntoEditor’s standout
features: praised collaboration tools, robust syntax validation, and user produc-
tivity, especially for Git users. Feedback emphasized improving user integration
and implementing single sign-on. Comparative assessments affirmed OntoEdi-
tor’s superiority over TurtleEditor and WebProtégé in collaboration and syntax
validation. OntoEditor emerges as a versatile tool, poised to revolutionize col-
laborative ontology editing. Its integration potential with VoCoREG expands
collaborative development across RDF serialization formats, significantly con-
tributing to ontology development.

10 Future Work

OntoEditor holds potential for advancement in several crucial areas. First, imple-
menting a user authentication system could significantly enhance collaboration
by meticulously tracking individual changes. Moreover, integrating a single sign-
on authentication method would simplify access to remote repositories, improv-
ing user experience and workflow efficiency. Expanding its support to encompass
additional RDF serialization formats, such as RDFa and Notation3, stands as
another pivotal area for OntoEditor’s evolution. Additionally, enabling the plat-
form to import local files for ontology development, independent of VCS, would
mark a substantial stride toward enhanced versatility and accessibility.

Acknowledgement

We express gratitude to the Cognitive Internet Technologies Research Center at
Fraunhofer for their vital support, as well as to our colleagues and students for
their collaborative efforts. Special thanks to ChatGPT [9] for enhancing writing
quality, optimizing sentence structure, and eliminating errors in this paper. We
also acknowledge its use in summarizing initial notes and proofreading the final
draft, extending our appreciation to its developers.

16 Hemid et al.

References

1. Berners-Lee, T.: Semantic Web Road Map (September 1998), https://www.w3.
org/DesignIssues/Semantic.html, Accessed: 2023-12-01

2. Cyganiak, R., Wood, D., Stones, R.M.L.: Resource Description Framework (RDF):
Concepts and Abstract Syntax, https://www.w3.org/TR/rdf11-concepts/

3. Dang, Q.: Secure Hash Standard (SHS), Federal Inf. Process. Stds. (NIST FIPS).
National Institute of Standards and Technology, Gaithersburg, MD (2012), https:
//doi.org/10.6028/NIST.FIPS.180-4

4. Ellis, C.A., Gibbs, S.J.: Concurrency Control in Groupware Systems. SIGMOD
Rec. p. 399–407 (1989). https://doi.org/10.1145/66926.66963, https://doi.org/
10.1145/66926.66963

5. Fette, I. and Melnikov, A.: The WebSocket Protocol (2011), https://tools.ietf.
org/html/rfc6455, Accessed: 2023-11-11

6. Hemid, A.: OntoEditor Survey Form, https://github.com/ahemaid/OntoEditor/
blob/main/SURVEY_FORM.pdf, Accessed: 2024-03-21

7. IsSemantic RDF Tools: isSemantic.net: Validate, visualize, generate, and convert
structured data, https://issemantic.net/rdf-converter, Accessed: 2023-11-12

8. Khiat, A., Halilaj, L., Hemid, A., Lohmann, S.: VoColReg: A Registry for Support-
ing Distributed Ontology Development using Version Control Systems. In: 2020
IEEE 14th International Conference on Semantic Computing (ICSC). pp. 393–399
(2020). https://doi.org/10.1109/ICSC.2020.00078

9. OpenAI: ChatGPT 3.5 (2023), https://chat.openai.com/, Large Language
Model, Accessed: 2024-03-01

10. Petersen, N., Coskun, G., Lange, C.: TurtleEditor: An ontology-aware web-editor
for collaborative ontology development. In: Proceedings of the Tenth IEEE Inter-
national Conference on Semantic Computing, February 3-5, 2016, Laguna Hills,
California, USA (2016), http://dx.doi.org/10.5281/zenodo.35499

11. Prud’hommeaux, E.: RDF Validation Service, http://www.w3.org/RDF/

Validator/, Accessed: 2024-01-11
12. Stellato, A., Rajbhandari, S., Turbati, A., Fiorelli, M., Caracciolo, C., Lorenzetti,

T., Keizer, J., Pazienza, M.: VocBench: A Web Application for Collaborative De-
velopment of Multilingual Thesauri. In: ESWC (2015)

13. Tudorache, T., Vendetti, J., Noy, N.: Web-Protege: A Lightweight OWL Ontology
Editor for the Web. In: OWLED (2008)

https://www.w3.org/DesignIssues/Semantic.html
https://www.w3.org/DesignIssues/Semantic.html
https://www.w3.org/TR/rdf11-concepts/
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.1145/66926.66963
https://doi.org/10.1145/66926.66963
https://doi.org/10.1145/66926.66963
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://github.com/ahemaid/OntoEditor/blob/main/SURVEY_FORM.pdf
https://github.com/ahemaid/OntoEditor/blob/main/SURVEY_FORM.pdf
https://issemantic.net/rdf-converter
https://doi.org/10.1109/ICSC.2020.00078
https://chat.openai.com/
http://dx.doi.org/10.5281/zenodo.35499
http://www.w3.org/RDF/Validator/
http://www.w3.org/RDF/Validator/

	OntoEditor: Real-time Collaboration via Distributed Version Control for Ontology Development

