
PyGraft: Configurable Generation of Synthetic
Schemas and Knowledge Graphs at Your

Fingertips

Nicolas Hubert1,2[0000−0002−4682−422X], Pierre Monnin3[0000−0002−2017−8426],
Mathieu d’Aquin2[0000−0001−7276−4702], Davy Monticolo1[0000−0002−4244−684X],

and Armelle Brun2[0000−0002−9876−6906]

1 Université de Lorraine, ERPI, Nancy, France
2 Université de Lorraine, CNRS, LORIA, Nancy, France

3 Université Côte d’Azur, Inria, CNRS, I3S, Sophia-Antipolis, France
{nicolas.hubert,mathieu.daquin,armelle.brun,davy.monticolo}@univ-lorraine.fr

pierre.monnin@inria.fr

Abstract. Knowledge graphs (KGs) have emerged as a prominent data
representation and management paradigm. Being usually underpinned
by a schema (e.g., an ontology), KGs capture not only factual informa-
tion but also contextual knowledge. In some tasks, a few KGs established
themselves as standard benchmarks. However, recent works outline that
relying on a limited collection of datasets is not sufficient to assess the
generalization capability of an approach. In some data-sensitive fields
such as education or medicine, access to public datasets is even more
limited. To remedy the aforementioned issues, we release PyGraft, a
Python-based tool that generates highly customized, domain-agnostic
schemas and KGs. The synthesized schemas encompass various RDFS
and OWL constructs, while the synthesized KGs emulate the character-
istics and scale of real-world KGs. Logical consistency of the generated
resources is ultimately ensured by running a description logic (DL) rea-
soner. By providing a way of generating both a schema and KG in a
single pipeline, PyGraft’s aim is to empower the generation of a more
diverse array of KGs for benchmarking novel approaches in areas such
as graph-based machine learning (ML), or more generally KG process-
ing. In graph-based ML in particular, this should foster a more holistic
evaluation of model performance and generalization capability, thereby
going beyond the limited collection of available benchmarks. PyGraft is
available at: https://github.com/nicolas-hbt/pygraft.

Keywords: Knowledge Graph · Schema · Semantic Web · Synthetic
Data Generator.

Resource type: Software
License: MIT License
DOI: https://doi.org/10.5281/zenodo.10243209
URL: https://github.com/nicolas-hbt/pygraft

https://github.com/nicolas-hbt/pygraft
https://doi.org/10.5281/zenodo.10243209
https://github.com/nicolas-hbt/pygraft

2 N. Hubert et al.

1 Introduction

Knowledge graphs (KGs) have been increasingly used as a graph-structure repre-
sentation of data. More specifically, a KG is a collection of triples (s, p, o) where
s (subject) and o (object) are two entities of the graph, and p is a predicate that
qualifies the nature of the relation holding between them [16]. KGs are usually
underpinned by a schema (e.g., an ontology) which defines the main concepts
and relations of a domain of interest, as well as the rules under which these
concepts and relations are allowed to interact [14].

KGs are being used in a wide array of tasks, in many of which a limited
collection of KGs established themselves as standard benchmarks for evaluating
model performance. However, there are some concerns around the sole usage
of these specific mainstream KGs for assessing the generalization capability of
newly introduced models. For example, for the particular task of node classifica-
tion, it has been demonstrated that mainstream datasets such as CiteSeer, Cora,
and PubMed feature similar statistical characteristics, especially homophily [24].
Consequently, new models are assessed with respect to a collection of statistically
similar datasets. Therefore, their performance improvement does not always hold
beyond the standard benchmark datasets [24]. Similarly, it has been shown that
many link prediction train sets suffer from extremely skewed distributions in
both the degrees of entities and the occurrence of a subset of predicates [28]. In
addition, some of the established link prediction datasets are plagued with data
biases [27] and include many occurrences of inference patterns [8,21,22] that pre-
dictive models are able to incorporate, which may cause overly optimistic evalu-
ation performance [8]. For example, the mainstream FB15k and WN18 datasets
are substantially affected by these biases. Therefore, more diverse datasets are
needed [27]. In this situation, it is of utmost importance to provide a way for
researchers to generate synthetic yet realistic datasets of different shapes and
characteristics, so that new models can be evaluated in a wide range of data
settings.

Worse than relying on a limited number of KGs is the lack of publicly avail-
able KGs in some application fields. Conducting research in domains such as
education, law enforcement, or medicine, is particularly difficult. On the grounds
of data privacy, collecting and sharing real-world knowledge may not be possi-
ble. As such, domain-oriented KGs are barely accessible in these areas. However,
engineers, practitioners, and researchers usually have precise ideas of the char-
acteristics of their problem of interest. In this context, it would be beneficial to
generate a synthetic KG that emulates the characteristics of a real KG [11].

The aforementioned issues led to several attempts at building synthetic gen-
erators of schemas and KGs, even though in most cases these two aspects have
been considered separately. Stochastic-based generators have been proposed to
output domain-agnostic KGs [1,10,25]. However good these methods are at gen-
erating large graphs quickly, their data generation process does not allow to
take an underlying schema into account [11]. Therefore, the resulting KGs are
not guaranteed to accurately mimic the characteristics of real-world KGs in a
desired application field. In contrast, schema-driven generators are able to syn-

PyGraft: Configurable Generation of Synthetic Schemas and KGs 3

thesize KGs that resemble real-world data. However, most works focused on
generating synthetic KGs on the basis of an already existing schema [23]. Syn-
thesizing both a schema and a KG underpinned by it is a more challenging task
that has been considered but with only limited success so far [23].

In this work, we aim at addressing this issue. In particular, we present
PyGraft, a Python-based tool to generate highly customized, domain-agnostic
schemas and KGs. The contributions of our work are the following:

– To the best of our knowledge, PyGraft is the first generator dedicated to
the generation of both schemas and KGs in a unique pipeline, while being
highly tunable based on a broad array of user-specified parameters. Notably,
the generated resources are domain-agnostic, which makes them usable for
benchmarking purposes regardless of the application field.

– The generated schemas and KGs are built with an extended set of RDFS
and OWL constructs and their logical consistency is ensured by the use of a
DL reasoner, which allows for both fine-grained description of resources and
strict compliance with common Semantic Web standards.

– We publicly release our code with a documentation and accompanying ex-
amples for ease of use.

The remainder of the paper is structured as follows. Related work is pre-
sented in Section 2. In Section 3, PyGraft is detailed and accompanied with
necessary background knowledge and comparisons with other available genera-
tors. In Section 4, a thorough performance analysis of PyGraft is presented. A
discussion on current potential use cases, limitations, and future work can be
found in Section 5. Lastly, Section 6 sums up the key insights presented in this
paper.

2 Related Work

The generation principle governing synthetic graph generators leads to differen-
tiate between stochastic-based, deep generative, and semantic-driven generators.
Along the description of these families of generators, Table 1 provides details on
current and open-source implementations. These tools are also compared with
PyGraft regarding several criteria.

Stochastic-based generators are usually characterized by their ability to
output large graphs in a short amount of time. Early works are represented by the
famous Erdős–Rényi model [10]. The Erdős–Rényi model generates graphs by in-
dependently assigning edges between pairs of nodes with a fixed probability. The
Barabási-Albert model [1] exhibits scale-free degree distributions and is based
on the principle of preferential attachment, where new nodes are more likely to
attach to nodes with higher degrees. The R-MAT model [5] generates large-scale
power-law graphs with properties like power-law degree distributions and com-
munity structures. More recently, TrillionG [25] – presented as an extension of
R-MAT – represents nodes and edges as vectors in a high-dimensional space.

4 N. Hubert et al.

TrillionG allows users to generate large graphs up to trillions of edges while ex-
hibiting lower space and time complexities than previously proposed generators.
In Table 1, stochastic-based generators are represented by igraph4, NetworkX5,
and Snap6. Although they are not specifically designed for graph generation,
they provide off-the-shelf implementations for generating random graphs, such
as the Erdős–Rényi and Barabási–Albert models. They are domain-agnostic and
scalable, but do not take into account any semantics.

Deep generative graph generators are trained on existing graph datasets
and learn to capture the underlying patterns of the input graphs. Deep genera-
tive graph models are typically based on generative adversarial networks (GANs)
and graph neural networks (GNNs), recurrent neural networks (RNNs), or vari-
ational autoencoders (VAEs). GraphGAN [31] leverages the GAN structure, in
which the generative model receives a vertex and aims at fitting its true connec-
tivity distribution over all other vertices – thereby producing fake samples for the
discriminative model to differentiate from ground-truth samples. GraphRNN [32]
is a deep autoregressive model that trains on a collection of graphs. It can be
viewed as a hierarchical model adding nodes and edges in a sequential manner.
A representant of the VAE family of generators is NeVAE [29], which is specif-
ically designed for molecular graphs. NeVAE features a decoder which is able
to guarantee a set of valid properties in the generated molecules. In particular,
MolGAN [7] and NeVAE [29] are bound to molecular graph generation. There-
fore, they are not domain-agnostic (Table 1). The other generators of this family
are, but they do not take a schema as input when generating random graphs,
i.e., they are not schema-driven (Table 1).

Semantic-driven generators, in contrast, incorporate schema-based con-
straints or external knowledge to generate graphs that exhibit specific char-
acteristics or follow certain patterns relevant to the given field of application.
In [15], the Lehigh University Benchmark (LUBM) and the Univ-Bench Artificial
data generator (UBA) are presented. The former is an ontology modelling the
university domain while the latter aims at generating synthetic graphs based on
the LUBM schema as well as user-defined queries and restrictions. Similarly, the
Linked Data Benchmark Council (LDBC) [2] released the Social Network Bench-
mark (SNB), which includes a graph generator for synthesizing social network
data based on realistic distributions. gMark [3] has subsequently been presented
as the first generator that satisfies the criteria of being domain-independent, scal-
able, schema-driven, and highly configurable, all at the same time. However, it
still requires already existing schemas as input. In [23], Melo and Paulheim focus
on the synthesis of KGs for the purpose of benchmarking link prediction and type
prediction tasks. The authors claim that there is a need for more diverse bench-
mark datasets for link prediction, with the possibility of having control over
their characteristics (e.g., the number of entities, relation assertions, number
of types, etc.). Therefore, Melo and Paulheim propose a synthesizing approach

4 https://github.com/igraph/python-igraph/
5 https://github.com/networkx/networkx/
6 https://github.com/snap-stanford/snap-python/

https://github.com/igraph/python-igraph/
https://github.com/networkx/networkx/
https://github.com/snap-stanford/snap-python/

PyGraft: Configurable Generation of Synthetic Schemas and KGs 5

which replicates input real-world graphs while allowing for controlled variations
in graph characteristics. Notably, they highlight the fact that most works, in-
cluding theirs, focus on synthesizing KGs based on an existing schema, which
leads them to formulate the desiderata of generating both a schema and a KG
from scratch as a promising venue for future work – which PyGraft actually does.
Subsequently, Feng et al. [11] proposed a schema-driven graph generator based
on the concept of Extended Graph Differential Dependencies (GDDx). However,
their approach cannot generate domain-agnostic schemas and thus requires an
existing schema as input. The DLCC benchmark proposed in [26] features a
synthetic KG generator based on user-specified graph and schema properties.
Beyond asking for a given number of nodes, relations and degree distribution in
the resulting KG, it allows for specifying a few RDFS constructs for the generation
of the underpinning schema.

None of the aforementioned semantic-driven generators perform a logical con-
sistency check of the generated graphs (see Table 1). Additionally, they can only
produce final KGs based on an input schema. Some of them are also domain-
specific. DLCC [26] is the closest work to ours, and, to the best of our knowl-
edge, this is the first and only work that allows to generate both a schema and a
KG while being domain-agnostic. However, it only features 3 schema constructs,
namely rdfs:domain, rdfs:range, and rdfs:subClassOf. These sole three con-
structs do not pose any constraints on triple generation (hence the consistency
checking is not needed) and do not fully feature all Semantic Web possibilities
that could exist in KGs. This is also why the resources generated with the DLCC
generator do not undergo any logical consistency checks (see Table 1).

In the present work, we aim at going a step further and taking numerous RDFS
and OWL constructs into account, as PyGraft features a broad range of schema
constructs (see Tables 2 and 3). Considered together, these constructs lead to
many potential sources of inconsistencies that need to be carefully avoided with
specific procedures and a final consistency check using a DL reasoner. However,
this more challenging setting allows PyGraft to generate KGs that feature a
broader range of Semantic Web possibilities.

3 PyGraft Description

This section starts by formally introducing the notions of schema and knowledge
graph. The schematic overview of PyGraft is presented in Section 3.2. PyGraft
schema and KG generation pipelines are presented in Sections 3.3 and 3.4, re-
spectively.

3.1 Preliminaries

On the one hand, a schema – e.g., an ontology – refers to a explicit specification
of a conceptualization that includes concepts, properties, and restrictions within
a particular domain of knowledge [14]. It helps ensure consistency, clarity, and

6 N. Hubert et al.

Table 1. Feature comparison of graph generation tools. Dashed line is used when a
feature is not applicable due to the characteristics of the described generation tool.
Domain-agnostic denotes whether a given tool is able to potentially operate with
schemas of different application fields.

Tool Domain-agnostic Schema-driven Schema generation Schema properties Graph properties Scalable Consistency check

igraph7 ✓ ✗ ✗ – ✓ ✓ –

NetworkX8 ✓ ✗ ✗ – ✓ ✓ –

Snap9 ✓ ✗ ✗ – ✓ ✓ –

GraphGen [13] ✓ ✗ ✗ – ✓ ✓ –

GraphRNN [32] ✓ ✗ ✗ – ✓ ✓ –

GraphVAE [30] ✓ ✗ ✗ – ✓ ✗ –

GraphWorld [24] ✓ ✗ ✗ – ✓ ✓ –

MolGAN [7] ✗ ✗ ✗ – ✓ ✗ –

NeVAE [29] ✗ ✗ ✗ – ✓ ✓ –

UBA-LUBM [15] ✗ ✓ ✗ – ✓ ✓ ✗

SNB [2] ✗ ✓ ✗ – ✓ ✓ ✗

gMark [3] ✓ ✓ ✗ – ✓ ✓ ✗

Melo et al. [23] ✓ ✓ ✗ – ✓ ✓ ✗

GDDx [11] ✓ ✓ ✗ – ✓ ✓ ✗

DLCC [26] ✓ ✓ ✓ 3 ✓ ✓ ✗

PyGraph (ours) ✓ ✓ ✓ 13 ✓ ✓ ✓

interoperability when representing and sharing knowledge. In our work, we con-
sider schemas to be represented as a collection of concepts C, properties P, and
axioms A, i.e., S = {C,P,A}. Schemas are typically represented using formal
languages such as RDFS10 (Resource Description Framework) and OWL11 (Web
Ontology Language).

Regarding KGs, distinct definitions co-exist [4,9]. In this work, we stick to the
inclusive definition of Hogan et al. [16], i.e., we consider a KG to be a graph where
nodes represent entities and edges represent relations between these entities. The
link between schemas and KGs lies in the fact that schemas are often used to
define the structure and semantics of a KG. In other words, a schema defines
the vocabulary and rules that govern entities and relationships in a KG. In this
view, a KG is a data graph that can be potentially enhanced with a schema [16].

3.2 Overview

From a high-level perspective, the entire PyGraft generation pipeline is depicted
in Fig. 1. In particular, Class and Relation Generators are firstly initialized
with user-specified parameters, and are then used for building the schema incre-
mentally. The logical consistency of the schema is subsequently checked using
HermiT reasoner [12] through the owlready212 Python library. If the user is
also interested in generating a KG based on this schema, the KG Generator
is initialized with KG-related parameters, and takes the previously generated
schema as input in order to sequentially build the KG. Ultimately, the logical
consistency of the resulting KG is assessed with HermiT. More details on the
10 https://www.w3.org/RDFS/
11 https://www.w3.org/OWL/
12 https://github.com/pwin/owlready2/

https://www.w3.org/RDFS/
https://www.w3.org/OWL/
https://github.com/pwin/owlready2/

PyGraft: Configurable Generation of Synthetic Schemas and KGs 7

Class Generator

Relation Generator

Schema
Parameters Schema

KG
Parameters KG Generator

KG

Consistency
Checking

Consistency
Checking

Fig. 1. PyGraft general overview.

schema-level generation are provided in Section 3.3, while Section 3.4 describes
the KG generation procedure.

3.3 Schema Generation

Table 2. User-defined parameters for schema and KG generations.

Parameter Description

Classes

num_classes Number of classes
max_depth Depth of the class hierarchy
avg_depth Average class depth
inheritance_ratio Proportion of rdfs:subClassOf
avg_disjointness Proportion of owl:DisjointWith

Relations

num_relations Number of relations
prop_profiled_relations Proportion of rdfs:domain and rdfs:range
relation_specificity Average depth of rdfs:domain and rdfs:range
prop_asymmetric Proportion of owl:AsymmetricProperty
prop_symmetric Proportion of owl:SymmetricProperty
prop_irreflexive Proportion of owl:IrreflexiveProperty
prop_reflexive Proportion of owl:ReflexiveProperty
prop_transitive Proportion of owl:TransitiveProperty
prop_functional Proportion of owl:FunctionalProperty
prop_inversefunctional Proportion of owl:InverseFunctionalProperty
prop_inverseof Proportion of owl:inverseOf
prop_subproperties Proportion of rdfs:subPropertyOf

Individuals

num_entities Number of entities
num_triples Number of triples
relation_balance Relation distribution across triples
prop_untyped Proportion of untyped entities
avg_depth_specific Average depth of most specific class
multityping Whether entities are multi-typed
avg_multityping Average number of most-specific classes per entity

The schema generation follows a well-defined series of steps. In particular,
the Class Generator in Fig. 1 is initialized first, and generates the class hierarchy

8 N. Hubert et al.

and disjointness axioms as detailed in Algorithm 1. Then, the Relation Genera-
tor is initialized and handles the relation generation following the procedure of
Algorithm 2. In the following, each algorithm is described step by step.

Class Generation. First, classes are generated based on the user-specified
number of classes num_classes (lines 1-2). Then, the user-specified max_depth
parameter is satisfied by taking one class after the other and creating child-
parent connections through the rdfs:subClassOf assertion (lines 3-7). At this
point, the class hierarchy is a purely vertical tree where each node (i.e., class) has
exactly one child, except the leaf node. The class hierarchy is then further filled
by taking each remaining class sequentially, and connecting it with other classes
so that avg_depth and inheritance_ratio are satisfied (lines 8-13). It is worth
mentioning that with some probability α chosen to be moderately low, a freshly
picked class can be placed randomly (lines 10-11). This does not necessarily go
in the direction of avg_depth and inheritance_ratio target parameters, but
it allows adding stochasticity and realism in the characteristics of the generated
class hierarchy. Besides, when a low number of classes are still to be connected,
this randomness is deactivated so that each subsequent class connection is in line
with avg_depth and inheritance_ratio fulfilment. Finally, class disjointnesses
are added to the schema by picking two classes A and B, ensuring that none of
them is a transitive parent or child of the other, and extending class disjointness
to their respective children, if any (lines 14-16).

When generating classes, anomalies may occur. For instance, choosing values
such that avg_depth > max_depth triggers an error. In a few other situations,
the schema is generated but the user requirements might not be completely
fulfilled. This can happen because of competing parameter values. For example,
the constraints num_classes = 6 (root excluded), max_depth = 3, avg_depth =
1.5, and inheritance_ratio = 2.5 cannot be simultaneously satisfied (Fig. 2).
In this situation, the schema is generated with a best-effort strategy, seeking to
build a schema with statistics as close as possible to the user requirements.

Relation Generation. Before presenting the procedure for generating rela-
tions and their properties, it is worth mentioning that PyGraft allows relations
to be described by multiple OWL and RDFS constructs. This leads to more realistic
schemas and KGs, at the expense of higher risk of inconsistency: some property
combinations are not logically consistent, e.g., a relation cannot be simulta-
neously qualified by owl:ReflexiveProperty and owl:IrreflexiveProperty.
Based on the relation properties available in PyGraft (Table 3), all combina-
tions were extracted and for each combination, a new graph was serialized using
rdflib13. This graph contains a unique relation which is qualified by the given
property combinations14. Based on the simplified schema, the HermiT reasoner
performs consistency checking. Finally, a dictionary stores all possible property

13 https://github.com/RDFLib/rdflib/
14 An instance triple should also be added. This is because some property combinations

such as owl:SymmetricProperty and owl:AsymmetricProperty are not flagged as
logically inconsistent per se in OWL. However, a relation qualified by these two prop-
erties is not allowed to connect any instances.

https://github.com/RDFLib/rdflib/

PyGraft: Configurable Generation of Synthetic Schemas and KGs 9

combinations. Knowing valid and invalid property combinations is necessary for
guiding relation property assignment and minimize logical inconsistency likeli-
hood before actually running the reasoner.

In Algorithm 2, this dictionary of valid property combinations is loaded
(line 3) just after initializing the number of relations specified by the user
(lines 1-2). Then, each relation in the schema is qualified with properties based
on a pre-defined order (lines 4-6). For example, owl:ReflexiveProperty and
owl:IrreflexiveProperty are assigned first, then owl:SymmetricProperty,
etc. These properties are named attributes as they characterize a relation per se.
Next, the relationship property owl:InverseOf is assigned to relations (line 7),
which poses constraints on relation domain and range assignments (line 8), which
themselves pose constraints on relation pairings through the rdfs:subPropertyOf
assertion (line 9), e.g., domain and range of subproperties should not be disjoint
with domain and range of superproperties.

In Table 3 are reported the relation properties that the current PyGraft
version handles, along with their logical definition and accompanying examples.

Table 3. Relation properties covered by PyGraft.

Property Definition Example

owl:AsymmetricProperty ∀x∀y : p(x, y)⇒ ¬p(y, x) isParentOf
owl:SymmetricProperty ∀x∀y : p(x, y)⇒ p(y, x) hasSibling
owl:ReflexiveProperty ∀x : p(x, x) hasSameColorAs
owl:IrreflexiveProperty ∀x : ¬p(x, x) isYoungerThan
owl:TransitiveProperty ∀x∀y∀z : p(x, y) ∧ p(y, z)⇒ p(x, z) isCheaperThan
owl:FunctionalProperty ∀x∀y∀z : (p(x, y) ∧ p(x, z))⇒ y = z hasISBN
owl:InverseFunctionalProperty ∀x∀y∀z : (p(x, y) ∧ p(z, y))⇒ x = z isEmailAddressOf
owl:InverseOf ∀x∀y : p(x, y)⇐⇒ q(y, x) owns⇐⇒ isOwnedBy
rdfs:subPropertyOf ∀x∀y : p(x, y)⇒ q(x, y) hasMother⇒ hasParent

3.4 Knowledge Graph Generation

In light of PyGraft overview (Fig. 1), this section explores how the KG generator
is initialized with user parameters and used in conjunction with any generated
schema to build the final KG. As for schema, we provide a step-by-step insight
into Algorithm 3. Entities and the KG are generated (lines 1-3) and a schema
dedicated to the KG generation is loaded (line 4). Based on prop_untyped,
entities are assigned a class whose depth in the class hierarchy should be in a
close range around avg_depth_specific (line 5). Based on avg_multityping,
several of them are assigned other classes of the same depth, provided that they
are not disjoint with any of the specific classes characterizing a given entity (lines
6-7). Then, triples are generated (lines 8-9) in a sequential manner. Namely,
unobserved entities in U have sampling priority, to ensure that the required
number of entities in the resulting KG is met as fully as possible. Ultimately,
checking procedures are performed (line 10) before the KG undergoes logical

10 N. Hubert et al.

root

C1

C2 C5C4 C6

root

C1 C6C4 C5

C2

C3 C3

root

C1

C2 C5C4

C6

C3

avg_depth=1.5

avg_inheritance=1.0

avg_depth=2.0

avg_inheritance=2.5

avg_depth=1.83

avg_inheritance=2.0

Fig. 2. Potential class hierarchies for the constraints: num_classes = 6, max_depth = 3,
avg_depth = 1.5, and inheritance_ratio = 2.5. Left and middle class hierarchies
are built with parameter priority. The right class hierarchy is built with a best-effort
strategy, without specific parameter privilege.

consistency checking using a semantic reasoner (line 11). If the generated KG is
inconsistent, a message warns the user but the KG is stored nevertheless. The
user can then choose to restart the generation procedure. It is worth mentioning
that the checking procedures (line 10) follow the relevant OWL 2 RL/RDF rules15.
These rules – in the form of first-order implications – are implemented in PyGraft
to ensure consistency pre-checking before the HermiT reasoner is deployed. In
addition, the OntOlogy Pitfall Scanner!16 was also used for identifying several
checking procedures and for ensuring compliance with common Semantic Web
standards.

4 PyGraft in Action

4.1 Efficiency and Scalability Details

In this section, the efficiency and scalability of PyGraft are benchmarked across
several schema and graph configurations. Each schema specification reported in
Table 4 is paired with each graph specification from Table 5. This leads to 27
distinct combinations.

In particular, schemas from S1 to S3 are small-sized, schemas from S4 to
S6 are medium-sized, and schemas from S7 to S9 are of larger sizes (Table 4).
For each schema of a given size, the degree of constraints vary as they contain
different levels of OWL and RDFS logical constructs. For example, S1 has less con-
straints than S2, which itself has less constraints than S3. Graph specifications
G1, G2, and G3 correspond to small-sized, medium-sized and large-sized graphs,
respectively (Table 5).

15 https://www.w3.org/TR/owl2-profiles/#ref-owl-2-rdf-semantics/
16 https://oops.linkeddata.es/

https://www.w3.org/TR/owl2-profiles/#ref-owl-2-rdf-semantics/
https://oops.linkeddata.es/

PyGraft: Configurable Generation of Synthetic Schemas and KGs 11

Algorithm 1 Class Generation
1: Initialize the set of unconnected classes: U = {C1, C2, ..., Cm}
2: Initialize the set of linked classes: L = ∅
3: C1 ← U.pop(), L.add(C1)
4: C1 rdfs:subClassOf root
5: while max_depth is not satisfied do ▷ Fulfilling class hierarchy depth
6: Ci ← U.pop(), L.add(Ci)
7: Ci rdfs:subClassOf Ci−1

8: while U ̸= ∅ do ▷ Building class hierarchy
9: Ci ← U.pop(), L.add(Ci)

10: if random(0, 1) ≤ α then ▷ Adding stochasticity
11: Place it randomly
12: else
13: Place it s.t. avg_depth and inheritance_ratio are satisfied
14: while current_disj < disj_ratio do ▷ Adds owl:disjointWith
15: Pick classes A and B s.t. B is neither a parent nor a child of A
16: Make A and B disjoint and extend disjointness to their respective children

Algorithm 2 Relation Generation
1: Initialize the set of unqualified relations: U = {R1, R2, ..., Rn}
2: Initialize the set of qualified relations: Q = ∅
3: Load compatible patterns
4: while U ̸= ∅ and attribute proportions not satisfied do ▷ Adding attributes
5: Ri ← U.pop(), Q.add(Ri)
6: qualify(Ri) based on priority order
7: inverse_pairing(Q) ▷ Adding owl:inverseOf
8: relation_profiling(Q) ▷ Adding rdfs:domain/range
9: subproperty_pairing(Q) ▷ Adding rdfs:subPropertyOf

Algorithm 3 Knowledge Graph Generation
1: Initialize the set of unobserved entities: U = {E1, E2, ..., Ep}
2: Initialize the set of observed entities: O = ∅
3: Initialize the knowledge graph: KG = ∅
4: Load the underpinning schema S
5: assign_class(U) ▷ Specific class attribution based on prop_untyped
6: if multityping then
7: complete_typing(U) ▷ Adding specific classes based on avg_multityping
8: while U ̸= ∅ and num_triples not satisfied do
9: KG ← generate_triples(U,O,S)

10: checking_procedures(KG) ▷ Removing foreseeable inconsistencies
11: reasoning(KG) ▷ HermiT reasoner

12 N. Hubert et al.

For these 27 unique configurations, execution times w.r.t. several dimensions
are computed and shown in Fig. 3. Execution times related to the schema gen-
eration are omitted as they are negligible. Experiments were conducted on a
machine with 2 CPUs Intel Xeon E5-2650 v4, 12 cores/CPU, and 128GB RAM.

It is worth mentioning that the 27 generated KGs were flagged as consistent
at the first attempt. The breakdown of time executions differs according to the
schema and graph sizes (see Fig. 3). For small graphs, the final consistency
checking is the most time-consuming part. For large graphs, triple generation
time dominates the rest. As graph sizes increase, all execution times grow but
we observe that PyGraft is able to generate consistent KGs quickly, even for
large KGs: with our experimental configuration, the total execution time for KGs
with 10K entities and 100K triples is roughly 1.5 minutes. In addition, PyGraft
scalability was assessed by asking a KG of 100K entities and 1M triples. On
the same machine, it took 47 minutes to generate such a KG, which was again
consistent at the first attempt.

Table 4. Generated schemas. Column headers from left to right: number of classes,
class hierarchy depth, average class depth, proportion of class disjointness (cd), number
of relations, average depth of relation domains and ranges (rs), and proportions of
reflexive (rf), irreflexive (irr), asymmetric (asy), symmetric (sy), transitive (tra), and
inverse (inv) relations.

|C| MAX(D) AVG(D) cd |R| rs ref irr asy sym tra inv

S1 25 3 1.5 0.1 25 1.5 0.1 0.1 0.1 0.1 0.1 0.1

S2 25 3 1.5 0.2 25 1.5 0.2 0.2 0.2 0.2 0.2 0.2

S3 25 3 1.5 0.3 25 1.5 0.3 0.3 0.3 0.3 0.3 0.3

S4 100 4 2.5 0.1 100 2.5 0.1 0.1 0.1 0.1 0.1 0.1

S5 100 4 2.5 0.2 100 2.5 0.2 0.2 0.2 0.2 0.2 0.2

S6 100 4 2.5 0.3 100 2.5 0.3 0.3 0.3 0.3 0.3 0.3

S7 250 5 3.0 0.1 250 3.0 0.1 0.1 0.1 0.1 0.1 0.1

S8 250 5 3.0 0.2 250 3.0 0.2 0.2 0.2 0.2 0.2 0.2

S9 250 5 3.0 0.3 250 3.0 0.3 0.3 0.3 0.3 0.3 0.3

Table 5. Different graph specifications. Column headers from left to right: number of
entities, number of triples, proportion of untyped entities, average depth of the most
specific specific class, average number of most-specific classes per multi-typed entity.

|E| |T | unt asc mul

G1 100 1, 000 0.3 2.0 2.0

G2 1, 000 10, 000 0.3 2.0 2.0

G3 10, 000 100, 000 0.3 2.0 2.0

PyGraft: Configurable Generation of Synthetic Schemas and KGs 13

S1
-G1

S2
-G1

S3
-G1

S6
-G1

S4
-G1

S5
-G1

S7
-G1

S8
-G1

S1
-G2

S2
-G2

S3
-G2

S4
-G2

S5
-G2

S9
-G1

S6
-G2

S7
-G2

S8
-G2

S9
-G2

S1
-G3

S4
-G3

S5
-G3

S2
-G3

S3
-G3

S6
-G3

S7
-G3

S8
-G3

S9
-G3

0

20

40

60

80

100

Ti
m

e
bu

dg
et

 (%
)

0.76

7.44

66.05

101.43Entity Generation
Triple Generation
KG Building
Reasoning

20

40

60

80

100

Ex
ec

ut
io

n
tim

e
(s

)

Fig. 3. Execution time breakdown for each configuration.

4.2 Usage Illustration

In this section, we briefly provide some usage examples to demonstrate how
easy it is to use PyGraft. Desired characteristics of the output schema and/or
KG can be specified with the path to a yaml or json configuration file. In the
example presented in Listing 1.1, after importing PyGraft, we first generate a
yaml configuration file in the current working directory. For the sake of simplicity,
the generated template is left untouched, i.e., we keep the default parameter
values. More advanced usage is provided in the official documentation: https://
pygraft.readthedocs.io/en/latest/. Then, we generate both a schema and
KG in a single pipeline. The generated resources are subsequently stored in the
current working directory.

import pygraft

pygraft.create_yaml_template ()
pygraft.generate("template.yml")

Listing 1.1. Schema and KG generation with PyGraft.

By default, the generated graph is stored as an rdf/xml file. A snippet of a
KG generated with PyGraft is provided in Listing 1.2.
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF

xmlns:ns1="http://purl.org/dc/terms/"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:sc="http://pygraf.t/"

>

<rdf:Description rdf:about="http://pygraf.t/C30">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

https://pygraft.readthedocs.io/en/latest/
https://pygraft.readthedocs.io/en/latest/

14 N. Hubert et al.

<owl:disjointWith rdf:resource="http://pygraf.t/C16"/>
</rdf:Description>
<rdf:Description rdf:about="http://pygraf.t/E324">
<rdf:type rdf:resource="http://pygraf.t/C4"/>
<rdf:type rdf:resource="http://pygraf.t/C17"/>
<schema:R15 rdf:resource="http://pygraf.t/E356"/>
<schema:R34 rdf:resource="http://pygraf.t/E44"/>

</rdf:Description>
<rdf:Description rdf:about="http://pygraf.t/R34">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#TransitiveProperty"/>
<rdfs:domain rdf:resource="http://pygraf.t/C17"/>
<rdfs:range rdf:resource="http://pygraf.t/C17"/>
<owl:inverseOf rdf:resource="http://pygraf.t/R15"/>

</rdf:Description>

Listing 1.2. Excerpt from a generated graph.

5 Discussion

5.1 Potential Uses

As mentioned, PyGraft can be used for generating several schemas and KGs
on the fly, thereby facilitating novel approaches and model benchmarking on a
wider range of datasets with diversified characteristics. In practice, this can be
easily done with inspecting the configuration file we provide as template, and
tweaking parameters as one sees fit.

Additionally, PyGraft can be used for generating anonymous data. Let us
assume one is working in a data-sensitive field such as medicine or education,
characterized by the paucity of readily available data. Thanks to PyGraft, it be-
comes much more accessible to experiment with sensitiveless testbeds, provided
that the user has a rough idea of the scale and characteristics of the resources
they want to mimic.

It is worth noting that a vibrant research community aims at incorporating
schema-based information into the learning process with KGs [6,19,20]. Using
information derived from the schema in addition to the facts contained in the KG
aims at building more semantic-aware approaches [17], that are expected to result
in more coherent predictions [18] and better predictive accuracy [6,17]. However,
it is frequently reported that most KGs do not come with publicly available
schemas that would facilitate the development of such schema-aware approaches.
For this reason, PyGraft may also be helpful to generate both synthetic schemas
with dependent KGs to foster the development of schema-driven, neuro-symbolic
approaches, and to run ablation studies on specific schema constructs in isolation.

5.2 Limitations, Sustainability, Maintenance and Future Work

In this section, we discuss the current limitations of PyGraft and elaborate on
our sustainability and maintenance plan, as well as future work opportunities.

First, it should be noted that PyGraft relies on rdflib for serializing triples.
As part of supplementary experiments, we tried to push PyGraft capabilities

PyGraft: Configurable Generation of Synthetic Schemas and KGs 15

to its limit by generating very large KGs with >10M entities and triples. In
such cases, the serialization failed. In future work, we will develop independent
serialization procedures so that bigger graphs can be generated.

Secondly, recall that our implemented checking procedures limit the likeli-
hood of any inconsistency before the DL reasoner is ultimately applied on the
generated KG. In case of inconsistencies that would remain undetected by the
checking procedures, our actual use of the HermiT reasoner is able to detect such
inconsistencies, but not to provide any information on the triples that should be
removed so that the KG becomes consistent. In future work, we will implement
such a functionality, so that the consistency of the generated KGs can be ensured
in a single loop without requiring any input from the user’s side.

More generally, we aim at maintaining the PyGraft library, a cornerstone
in our commitment to robust software engineering practices and open-source
community engagement. Our approach is to release new versions in response to
emerging user requirements, ensuring that PyGraft not only meets but antic-
ipates the needs of its users. For instance, a common request is the ability to
generate literals – which we seek to achieve in the near future. Furthermore, we
recently welcomed the suggestion of offering a hub that would gather different
KG profiles generated by the community. To this aim, we welcome all contribu-
tions on Github (e.g.,, issues, forks, or pull requests) to make PyGraft useful to
researchers of a large array of communities. We are dedicated to incorporating
methodologies for continuous integration and deployment, fostering a test-driven
development environment that guarantees reliability and efficiency. We also want
PyGraft to fit within the Semantic Web community and be recognized as a useful
tool for researchers and engineers working on KG-based applications.

In future work, we will showcase the impact of PyGraft in real-world use
cases. Some relevant scenarios include recommender systems and ontology re-
pairment. In particular, for the latter use-case, we envision the creation of vol-
untarily imperfect schemas, containing (known) contradictions to resolve. Link
prediction also appears as an appropriate task to evaluate PyGraft’s usefulness.

6 Conclusion

In this work, we presented PyGraft, a Python tool for generating synthetic
schemas and KGs from user requirements. Several OWL and RDFS constructs are
integrated to output realistic KGs that comply with Semantic Web standards.
PyGraft allows researchers and practitioners to generate schemas and KGs on
the fly, provided minimal knowledge about the desired specifications. Hence,
PyGraft can prove useful for various applications. As it allows for generating
schemas and KGs of controlled characteristics, it can serve as a well-suited tool
for benchmarking novel approaches or models. Being domain-agnostic, PyGraft
can be used to generate synthetic schemas and KGs resembling real ones in data-
sensitive fields where access or publication of public data is scarce. Due to the
richly described generated KGs in terms of OWL and RDFS constructs, PyGraft
may also facilitate the development of schema-driven, neuro-symbolic models.

16 N. Hubert et al.

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74, 47–97 (Jan 2002). https://doi.org/10.1103/RevModPhys.74.47

2. Angles, R., Boncz, P.A., Larriba-Pey, J.L., Fundulaki, I., Neumann, T., Erling, O.,
Neubauer, P., Martínez-Bazan, N., Kotsev, V., Toma, I.: The linked data bench-
mark council: a graph and RDF industry benchmarking effort. SIGMOD Rec.
43(1), 27–31 (2014). https://doi.org/10.1145/2627692.2627697

3. Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L., Lemay, A., Advokaat, N.:
gmark: Schema-driven generation of graphs and queries. IEEE Trans. Knowl. Data
Eng. 29(4), 856–869 (2017). https://doi.org/10.1109/TKDE.2016.2633993

4. Bonatti, P.A., Decker, S., Polleres, A., Presutti, V.: Knowledge graphs: New direc-
tions for knowledge representation on the semantic web (dagstuhl seminar 18371).
Dagstuhl Reports 8(9), 29–111 (2018). https://doi.org/10.4230/DagRep.8.9.29

5. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A recursive model for graph
mining. In: Proceedings of the Fourth SIAM International Conference on Data
Mining, Lake Buena Vista, Florida, USA, April 22-24, 2004. pp. 442–446. SIAM
(2004). https://doi.org/10.1137/1.9781611972740.43

6. d’Amato, C., Quatraro, N.F., Fanizzi, N.: Injecting background knowledge into
embedding models for predictive tasks on knowledge graphs. In: The Semantic
Web - 18th International Conference, ESWC 2021, Virtual Event, June 6-10, 2021,
Proceedings. Lecture Notes in Computer Science, vol. 12731, pp. 441–457. Springer
(2021). https://doi.org/10.1007/978-3-030-77385-4_26

7. De Cao, N., Kipf, T.: MolGAN: An implicit generative model for small molecular
graphs. ICML 2018 workshop on Theoretical Foundations and Applications of Deep
Generative Models (2018)

8. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowl-
edge graph embeddings. In: Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7,
2018. pp. 1811–1818. AAAI Press (2018)

9. Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. In: Joint Pro-
ceedings of the Posters and Demos Track of the 12th International Conference
on Semantic Systems - SEMANTiCS2016 and the 1st International Workshop on
Semantic Change & Evolving Semantics (SuCCESS’16) co-located with the 12th
International Conference on Semantic Systems (SEMANTiCS 2016), Leipzig, Ger-
many, September 12-15, 2016. CEUR Workshop Proceedings, vol. 1695. CEUR-
WS.org (2016)

10. ERDdS, P., R&wi, A.: On random graphs i. Publ. math. debrecen 6(290-297), 18
(1959)

11. Feng, Z., Mayer, W., He, K., Kwashie, S., Stumptner, M., Grossmann, G., Peng,
R., Huang, W.: A schema-driven synthetic knowledge graph generation approach
with extended graph differential dependencies (gddxs). IEEE Access 9, 5609–5639
(2021). https://doi.org/10.1109/ACCESS.2020.3048186

12. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: An OWL 2
reasoner. J. Autom. Reason. 53(3), 245–269 (2014). https://doi.org/10.1007/
s10817-014-9305-1

13. Goyal, N., Jain, H.V., Ranu, S.: Graphgen: A scalable approach to domain-
agnostic labeled graph generation. In: WWW ’20: The Web Conference 2020,

https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1145/2627692.2627697
https://doi.org/10.1145/2627692.2627697
https://doi.org/10.1109/TKDE.2016.2633993
https://doi.org/10.1109/TKDE.2016.2633993
https://doi.org/10.4230/DagRep.8.9.29
https://doi.org/10.4230/DagRep.8.9.29
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1007/978-3-030-77385-4_26
https://doi.org/10.1007/978-3-030-77385-4_26
https://doi.org/10.1109/ACCESS.2020.3048186
https://doi.org/10.1109/ACCESS.2020.3048186
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1007/s10817-014-9305-1

PyGraft: Configurable Generation of Synthetic Schemas and KGs 17

Taipei, Taiwan, April 20-24, 2020. pp. 1253–1263. ACM / IW3C2 (2020). https:
//doi.org/10.1145/3366423.3380201

14. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge
sharing? Int. J. Hum. Comput. Stud. 43(5-6), 907–928 (1995). https://doi.org/
10.1006/ijhc.1995.1081

15. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base
systems. J. Web Semant. 3(2-3), 158–182 (2005). https://doi.org/10.1016/j.
websem.2005.06.005

16. Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., de Melo, G., Gutierrez,
C., Kirrane, S., Gayo, J.E.L., Navigli, R., Neumaier, S., Ngomo, A.N., Polleres,
A., Rashid, S.M., Rula, A., Schmelzeisen, L., Sequeda, J., Staab, S., Zim-
mermann, A.: Knowledge Graphs. Synthesis Lectures on Data, Semantics, and
Knowledge, Morgan & Claypool Publishers (2021). https://doi.org/10.2200/
S01125ED1V01Y202109DSK022

17. Hubert, N., Monnin, P., Brun, A., Monticolo, D.: Enhancing knowledge graph
embedding models with semantic-driven loss functions. CoRR abs/2303.00286
(2023). https://doi.org/10.48550/arXiv.2303.00286

18. Hubert, N., Monnin, P., Brun, A., Monticolo, D.: Sem@k: Is my knowledge graph
embedding model semantic-aware? CoRR abs/2301.05601 (2023). https://doi.
org/10.48550/arXiv.2301.05601

19. Hubert, N., Paulheim, H., Monnin, P., Brun, A., Monticolo, D.: Schema first!
learn versatile knowledge graph embeddings by capturing semantics with maschine.
CoRR abs/2306.03659 (2023). https://doi.org/10.48550/arXiv.2306.03659

20. Jain, N., Tran, T., Gad-Elrab, M.H., Stepanova, D.: Improving knowledge graph
embeddings with ontological reasoning. In: The Semantic Web - ISWC 2021 - 20th
International Semantic Web Conference, ISWC 2021, Virtual Event, October 24-
28, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12922, pp. 410–426.
Springer (2021). https://doi.org/10.1007/978-3-030-88361-4_24

21. Jin, L., Yao, Z., Chen, M., Chen, H., Zhang, W.: A comprehensive study on knowl-
edge graph embedding over relational patterns based on rule learning (2023)

22. Liu, S., Grau, B.C., Horrocks, I., Kostylev, E.V.: Revisiting inferential benchmarks
for knowledge graph completion. CoRR abs/2306.04814 (2023). https://doi.
org/10.48550/arXiv.2306.04814

23. Melo, A., Paulheim, H.: Synthesizing knowledge graphs for link and type prediction
benchmarking. In: The Semantic Web - 14th International Conference, ESWC
2017, Portorož, Slovenia, May 28 - June 1, 2017, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 10249, pp. 136–151 (2017). https://doi.org/10.
1007/978-3-319-58068-5_9

24. Palowitch, J., Tsitsulin, A., Mayer, B., Perozzi, B.: Graphworld: Fake graphs bring
real insights for gnns. In: KDD ’22: The 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022.
pp. 3691–3701. ACM (2022). https://doi.org/10.1145/3534678.3539203

25. Park, H., Kim, M.: Trilliong: A trillion-scale synthetic graph generator using a
recursive vector model. In: Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19,
2017. pp. 913–928. ACM (2017). https://doi.org/10.1145/3035918.3064014

26. Portisch, J., Paulheim, H.: The DLCC node classification benchmark for analyzing
knowledge graph embeddings. In: The Semantic Web - ISWC 2022 - 21st Inter-
national Semantic Web Conference, Virtual Event, October 23-27, 2022, Proceed-
ings. Lecture Notes in Computer Science, vol. 13489, pp. 592–609. Springer (2022).
https://doi.org/10.1007/978-3-031-19433-7_34

https://doi.org/10.1145/3366423.3380201
https://doi.org/10.1145/3366423.3380201
https://doi.org/10.1145/3366423.3380201
https://doi.org/10.1145/3366423.3380201
https://doi.org/10.1006/ijhc.1995.1081
https://doi.org/10.1006/ijhc.1995.1081
https://doi.org/10.1006/ijhc.1995.1081
https://doi.org/10.1006/ijhc.1995.1081
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.48550/arXiv.2303.00286
https://doi.org/10.48550/arXiv.2303.00286
https://doi.org/10.48550/arXiv.2301.05601
https://doi.org/10.48550/arXiv.2301.05601
https://doi.org/10.48550/arXiv.2301.05601
https://doi.org/10.48550/arXiv.2301.05601
https://doi.org/10.48550/arXiv.2306.03659
https://doi.org/10.48550/arXiv.2306.03659
https://doi.org/10.1007/978-3-030-88361-4_24
https://doi.org/10.1007/978-3-030-88361-4_24
https://doi.org/10.48550/arXiv.2306.04814
https://doi.org/10.48550/arXiv.2306.04814
https://doi.org/10.48550/arXiv.2306.04814
https://doi.org/10.48550/arXiv.2306.04814
https://doi.org/10.1007/978-3-319-58068-5_9
https://doi.org/10.1007/978-3-319-58068-5_9
https://doi.org/10.1007/978-3-319-58068-5_9
https://doi.org/10.1007/978-3-319-58068-5_9
https://doi.org/10.1145/3534678.3539203
https://doi.org/10.1145/3534678.3539203
https://doi.org/10.1145/3035918.3064014
https://doi.org/10.1145/3035918.3064014
https://doi.org/10.1007/978-3-031-19433-7_34
https://doi.org/10.1007/978-3-031-19433-7_34

18 N. Hubert et al.

27. Rossi, A., Firmani, D., Merialdo, P., et al.: Knowledge graph embeddings or bias
graph embeddings? a study of bias in link prediction models. In: CEUR WORK-
SHOP PROCEEDINGS. vol. 3034. CEUR-WS (2021)

28. Rossi, A., Matinata, A.: Knowledge graph embeddings: Are relation-learning mod-
els learning relations? In: Proceedings of the Workshops of the EDBT/ICDT 2020
Joint Conference, Copenhagen, Denmark, March 30, 2020. CEUR Workshop Pro-
ceedings, vol. 2578. CEUR-WS.org (2020)

29. Samanta, B., De, A., Jana, G., Gómez, V., Chattaraj, P.K., Ganguly, N., Gomez-
Rodriguez, M.: NEVAE: A deep generative model for molecular graphs. J. Mach.
Learn. Res. 21, 114:1–114:33 (2020)

30. Simonovsky, M., Komodakis, N.: Graphvae: Towards generation of small graphs
using variational autoencoders. In: Artificial Neural Networks and Machine Learn-
ing - ICANN 2018 - 27th International Conference on Artificial Neural Networks,
Rhodes, Greece, October 4-7, 2018, Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 11139, pp. 412–422. Springer (2018). https://doi.org/10.
1007/978-3-030-01418-6_41

31. Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang, F., Xie, X., Guo,
M.: Graphgan: Graph representation learning with generative adversarial nets.
In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. pp. 2508–2515.
AAAI Press (2018)

32. You, J., Ying, R., Ren, X., Hamilton, W.L., Leskovec, J.: Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In: Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine Learning Research,
vol. 80, pp. 5694–5703. PMLR (2018)

https://doi.org/10.1007/978-3-030-01418-6_41
https://doi.org/10.1007/978-3-030-01418-6_41
https://doi.org/10.1007/978-3-030-01418-6_41
https://doi.org/10.1007/978-3-030-01418-6_41

	PyGraft: Configurable Generation of Synthetic Schemas and Knowledge Graphs at Your Fingertips

