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Abstract. We present FlexRML, a flexible and memory efficient soft-
ware resource for interpreting and executing RML mappings. As a knowl-
edge graph materializer, FlexRML can operate on a wide range of sys-
tems, from cloud-based environments to edge devices, as well as resource-
constrained IoT devices and real-time microcontrollers. The primary goal
of FlexRML is to balance memory efficiency with fast mapping execu-
tion. This is achieved by using C++ for the implementation and a result
size estimation algorithm that approximates the number of N-Quads
generated and, based on the estimate, optimizes bit sizes and data struc-
tures used to save memory in preparation for mapping execution. Our
evaluation shows that FlexRML’s adaptive bit size and data structure
selection results in higher memory efficiency compared to conventional
methods. When benchmarked against state-of-the-art RML processors,
FlexRML consistently shows lower peak memory consumption across dif-
ferent datasets while delivering faster or comparable execution times.
Resource type: RML Processor
License: GNU AGPLv3
DOI: https://doi.org/10.5281/zenodo.10256148
URL: https://github.com/wintechis/flex-rml

Keywords: Knowledge Graph Construction · RML · Internet of Things.

1 Introduction

Knowledge graphs (KGs) [13] have become increasingly popular in both industry
and academia. For instance, KGs are used to enhance Large Language Models
(LLMs) by supplementing them with additional factual information, thereby
countering issues like hallucination [20]. In the context of Industry 4.0, KGs
play an important role in enabling semantic interoperability between devices
and services [2]. Additionally, as Internet of Things (IoT) devices generate large
volumes of raw data, the application of Semantic Web technologies, such as RDF
and ontologies, can add context and meaning to the data, which significantly
increases its value [29].

One approach to constructing KGs, i.e., mapping non-RDF data such as
CSV, JSON, or XML to RDF, is to use a generic mapping language such as the
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RDF Mapping Language (RML) [9]. RML mappings are represented as RDF
graphs and outline the tasks for transforming a non-RDF data source, called
logicalSource, into RDF format. The transformation process is organized by a
construct called triplesMap. Within a triplesMap, the generation of RDF data is
described by two main mappings: the subjectMap and the predicateObjectMap.
The subjectMap is responsible for mapping elements from the logical source to
RDF subjects. In turn, the predicateObjectMap handles the creation of pred-
icates and objects for the RDF data by integrating a predicateMap that maps
to RDF predicates and an objectMap that maps to RDF objects. If objects
are generated using a join, the objectMap also specifies a joinCondition. The
RML mappings are used in conjunction with RML processors, which are engines
that interpret the mappings and transform non-RDF input data to output RDF
data in serializations such as N-Quads. Well known RML processors are the
RMLMapper3, Morph-KGC [3], or the SDM-RDFizer [15].

The current generation of RML processors is implemented using high-level
languages such as Java, JavaScript, and Python. The design choice to use high-
level languages makes them well-suited for operation in unconstrained environ-
ments, such as cloud platforms. However, it also restricts their ability to function
effectively in environments with limited memory, such as single-board computers
or highly constrained microcontrollers. Additionally, these RML processors may
not be optimal for real-time applications that are crucial in Industry 4.0 contexts,
where processing needs to be reliably completed within strict time limits [14].

With the emergence of new and evolving domains such as LLMs and Indus-
try 4.0, there is a growing demand for access to both semantic and factual data.
To meet this demand, there is a need for an RML processor that is not only
fast and memory efficient, but also versatile enough to operate in a variety of
environments, whether constrained, unconstrained, or requiring real-time guar-
antees. The main challenge in developing such a framework is to ensure efficient
management of available processing power and memory.

Our resource, FlexRML, is a flexible and memory efficient RML processor
developed in C++ to ensure adaptability to various environments with different
resource constraints. FlexRML uses an algorithm based on Bernoulli sampling
to estimate the result size, specifically the number of unique RDF N-Quads to
be generated. This feature allows FlexRML to select the most optimal hash
functions for different data structures, balancing improved memory efficiency
and increased processing time for KG materialization. From an implementation
perspective, FlexRML optimizes at the mapping level using techniques such as
self-join elimination, RML mapping normalization, and, where possible, replaces
join operations with reference conditions. In cases where joins cannot be replaced,
FlexRML uses a hash join algorithm to perform them. To increase memory
efficiency, duplicate removal is handled by storing the hash of already generated
RDF data, which carries the risk of hash collisions that can result in missing
output N-Quads. But the risk can be mitigated by choosing an appropriate bit
size when computing hashes.

3 https://github.com/RMLio/rmlmapper-java
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The key contributions of our work are as follows:

– Introduction of FlexRML, a memory-efficient RML processor capable of
mapping data in cloud, edge, and IoT environments.

– Usage of a sampling-based algorithm to estimate N-Quads, enabling optimal
hash function selection for improved memory efficiency.

– Comprehensive evaluation of FlexRML’s performance against existing RML
processors across cloud, edge, and IoT platforms, accompanied by the intro-
duction of a dataset specifically tailored for evaluating IoT devices.

2 Related Work

There are several languages and techniques for building KGs from non-RDF
data, notably SPARQL-Generate [19], SPARQL Anything [6], and D-REPR [28].
However, the dominant method relies on R2RML [7], a W3C recommendation,
and its extension RML, which supports non-relational data sources such as CSV,
JSON, and XML. The adoption of RML is underscored by the number of RML
processors available [3,15,23,25], each with different conformance4 and features,
such as mapping partitions. These implementations in high-level languages are
suitable for cloud environments, but are less optimal for resource-constrained
devices. In contrast, we propose an RML processor designed for a wide range
of devices, from cloud and consumer hardware to single-board computers and
resource-constrained microcontrollers and IoT devices.

Semantic Web technologies such as RDF, RDFS, and OWL are considered
key to semantic interoperability in IoT, as proposed by various authors [12,17].
Many proposed IoT architectures [1,18,22] share a common need to map IoT data
to RDF for cloud storage and application use, typically using an edge device such
as a gateway for mapping. However, FlexRML offers a simpler alternative by en-
abling direct data mapping on Internet-connected, constrained devices, enabling
direct cloud uploads and bypassing the need for edge RML processors. Never-
theless, in scenarios where edge-based RML processors are required, FlexRML’s
memory efficiency makes it a viable option for edge deployment as well. The
availability of RDF data directly on IoT devices is a prerequisite for device-
level semantic interoperability, which can be used to enable data exchange in
distributed IoT systems.

3 FlexRML: Architecture and Implementation

The FlexRML architecture integrates both high-level design and specific imple-
mentation details, providing a complete picture of how each component works
within the system.

FlexRML performs two main steps: the Preprocessing Step and the Mapping
Step, as shown in Figure 1.

4 https://rml.io/implementation-report/
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Fig. 1. The Architecture of FlexRML.

3.1 Preprocessing Step

The Preprocessing Step is designed to optimize input RML mappings for efficient
processing. This involves preparing the correct physical data structures and hash
functions, and extracting necessary processing steps from the RML mappings.

Mapping Optimizer The Mapping Optimizer is designed to increase the
efficiency of input RML mappings. This is achieved through a multi-step process:
First, the component analyzes the input RML mapping and applies strategies
such as self-join elimination [3] or mapping normalization [24]. In addition, the
component evaluates the potential to replace join operations with reference con-
ditions [27]. From a technical point of view, the optimizer uses the Serd5 C
library for RDF parsing. The component’s functionality includes replacing self-
joins with corresponding objectMaps, expanding constant shortcuts or classes,
and decomposing complex predicateObjectMaps that may consist of multiple
predicateMaps or objectMaps. Where appropriate, the optimizer also replaces
standard joins with reference conditions in the RML mapping to improve mate-
rialization speed.

Result Size Estimator The Result Size Estimator uses sampling methods
described in section 4 to estimate the number of N-Quads generated by the
RML mapping. Based on the estimated total T̂ , the component determines the
appropriate bit size for hash functions. The bit size corresponds to the number of
possible unique hash values N and must be chosen according to T̂ . The decision
which hash size to use is based on pre-calculated thresholds derived from the
birthday problem in probability theory (see equation 1).

P = 1− N !

(N − T̂ )! ·N T̂
≈ 1− e−

T̂2

2N (1)

5 https://github.com/drobilla/serd
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The thresholds are computed to allow a worst-case maximum hash collision
probability P of 0.05 percent, which has proven sufficient in our experiments to
mitigate missing output RDF statements. Therefore, we have set the thresholds
at 2,073 N-Quads for 32-bit hash functions, and 135,835,773 N-Quads for 64-bit
hash functions. For estimates exceeding these thresholds, 128-bit hash functions
are used. FlexRML uses the CityHash algorithm6 to perform string hashing op-
erations due to its high hashing speed. The CityHash algorithm is available in
32-bit, 64-bit and 128-bit variants. Using smaller bit sizes for hash computations
not only speeds up the process, but also reduces the amount of memory needed
to store hashes. The goal is to choose the smallest bit size for the hash function
that keeps the risk of hash collisions below the predefined probability thresh-
old. Choosing an optimal bit size is critical, as this will significantly reduce the
probability of hash collisions.

Mapping Analyzer The Mapping Analyzer component processes the nor-
malized input RML mappings and extracts key information. The extracted in-
formation includes the number of predicateObjectMaps in each triplesMap, the
classes corresponding to the subjectMap, and the details of objectMaps includ-
ing the joinCondition. The data extracted by the Mapping Analyzer is organized
into several arrays. These arrays form the basis of the mapping process and serve
as directives to the Mapping Executor.

3.2 Mapping Step

The Mapping Step performs the actual mapping of the logical sources to RDF
using the Mapping Executor, which interprets the extracted information gener-
ated by the Mapping Analyzer, creates N-Quads, and removes duplicates using a
Duplicate Checker and a hash set to track hashes of already generated N-Quads.

The Mapping Step is parallelized in FlexRML using the Producer-Consumer
design pattern. In this setup, each triplesMap is processed in a separate thread by
a Mapping Executor acting as a producer, while the Duplicate Checker operates
as a consumer in a separate thread. This design ensures that all generated N-
Quads are checked before they are written to the output file, while allowing
FlexRML to use multiple threads to speed up the materialization process.

Mapping Executor The Mapping Executor component maps input data
sources into N-Quads. The component processes each data element from the
specified inputs, e.g., from a file on the local drive or from in-memory data
structures such as the std::string class [8], converts the read element into the
internal vector-based data representation, and generates a set of N-Quads for
each element. Note that FlexRML currently supports only CSV data as input,
due to limited support for the C++ standard library in some microcontroller
environments, which restricts the use of existing parsing libraries. The N-Quad
generation uses the extracted information from the RML mapping gathered by
the Mapping Analyzer. If join operations cannot be substituted with a reference

6 https://opensource.googleblog.com/2011/04/introducing-cityhash.html
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condition at the mapping level, the Mapping Executor performs a join using a
hash join algorithm, and therefore must create an index on the data beforehand.

Duplicate Checker Each generated set of N-Quads is passed to the Dupli-
cate Checker. This component uses a hash function with a bit size of either 32,
64, or 128, as specified by the Result Size Estimator. Each N-Quad is hashed,
and the hash value is then evaluated for uniqueness. The evaluation is done by
attempting to insert the hash into a hash set. If the hash already exists in the set,
indicating a potential duplicate, the corresponding N-Quad is discarded. Other-
wise the N-Quad is considered unique and written to the output file. Through
this mechanism, the output RDF data is continuously and incrementally built.
As new N-Quads are generated, they undergo the same duplication check. How-
ever, a risk of this method is the possibility of hash collisions where an N-Quad
is mistakenly marked as a duplicate, resulting in its absence in the output. The
risk can be mitigated by choosing an appropriate bit size.

4 Estimation of Generated RDF Elements

Estimating the number of RDF elements, such as N-Quads, that will be gener-
ated before executing an RML mapping is beneficial. For instance, in FlexRML,
the estimate is used to select the appropriate bit size for hash functions. Gen-
erally, the estimation can serve other purposes similar to those in classical rela-
tional database systems, such as query optimization or the selection of efficient
algorithms and access methods.[16].

Independent Bernoulli sampling is an established technique for estimating re-
sult sizes [11, p. 348], especially for join operations [26]. In general the algorithm
consits of following steps:

1. Generate a sample from the original dataset through simple random sam-
pling, where each record is independently and randomly chosen.

2. Count the elements in the sample that exhibit the desired characteristic. The
proportion of these elements in the sample is an estimate of their proportion
in the entire dataset.

3. Use the identified proportion to estimate the number of elements with the
desired characteristic in the entire dataset.

The method allows quick estimations by analyzing the distribution and prop-
erties of the data without processing the entire dataset, assuming sample sizes
are large [21]. In KG construction, we sample the logical source data, perform
the RML mapping on the sample, and enumerate the unique results, before
estimating the unique results in the entire dataset.

When performing the estimation, we differentiate between two categories
of triplesMaps and their corresponding objectMaps: those that require a join
operation and those that do not.

4.1 Estimation of triplesMaps without Join

To estimate the output size produced by triplesMaps consisting of objectMaps
without join we assess the number of unique N-Quads U that will be generated



FlexRML: A Flexible and Memory Efficient Knowledge Graph Materializer 7

when mapping each element of the logical data source A. Elements in the logical
source can be, for example, rows in CSV files or JSON objects in JSON arrays.

To estimate U , we generate a Bernoulli sample SA drawn from the original
dataset A. The sampling process is performed with a given probability p. Using
SA, we perform the mapping and enumerate the generated unique N-Quads U ′.
Given that each element’s inclusion in our sample is defined by p, the expected
count of U ′ is U multiplied by p, or E[U ′] = U · p. From this, we derive our
estimator Û , which represents the estimated total number of unique N-Quads
that will be generated when mapping the entire logical source. To obtain Û ,
we scale U ′ by the inverse of the sampling probability, resulting in Û = U ′

p . To

calculate the expected value of Û , we consider the scaling of U ′, resulting in
E[Û ] = E[U

′

p ]. Substituting the expression for U ′, we further show that

E[Û ] = E[
U ′

p
] = E[

U · p
p

] = E[U ] (2)

which demonstrates that Û serves as an estimator for U .
To estimate the total number of N-Quads, Ûtotal, generated by all triplesMaps

with non-join objectMaps, we sum the individual estimates Û :

Ûtotal =
∑

Û (3)

4.2 Estimation of triplesMaps with Join

When estimating the number of unique N-Quads J when mapping triplesMaps
consisting of objectMaps with joins, it must be taken into account that there
are two logical sources, A and B, instead of just one. Therefore, the estimation
operation requires the creation of two samples using independent Bernoulli sam-
pling: sample SA from logical source A sampled with probability pA, and sample
SB from logical source B sampled with probability pB . The RML mapping is
performed on the two samples, and the unique N-Quads J ′ generated are enu-
merated. To obtain the estimated number of unique N-Quads Ĵ when mapping
the two entire logical sources, we again scale up J ′ by using the inverse of the two
sampling probabilities pA and pB [26]. The inverse is used because the sampling
probability represents the fraction of the logical source that is included in the
sample. Thus, to estimate the number of unique RDF elements when mapping
the entire content of the logical sources, we use Ĵ = J′

pA·pB
.

To estimate the total number of unique N-Quads generated by triplesMaps
with joins Ĵtotal, we sum the scaled estimates of generated unique N-Quads:

Ĵtotal =
∑

Ĵ (4)

4.3 Estimation of all triplesMaps

The estimate of the total number of unique N-Quads generated from all triples-
Maps, T̂ , is therefore given by

T̂ = Ûtotal + Ĵtotal (5)
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By adding the unique estimates from predicateObjectMaps without joins to the
unique estimates of predicateObjectMaps with joins, we arrive at an estimation
of the total unique RDF elements generated through an RML mapping.

5 Empirical Evaluation

In the evaluation we aim to answer following three research questions:

– R1: How accurate is the estimation using the Result Size Estimator?
– R2: How does adaptive selection of the appropriate bit size for hash algo-

rithms impact execution time and memory consumption?
– R3: How does FlexRML compare to state-of-the-art KG materializers in

terms of execution time and memory consumption?

All results and scripts to run the benchmark can be found on GitHub7.
Datasets We evaluated FlexRML using three benchmarks. In a cloud and

edge environment we used the GTFS Madrid benchmark [5] with scale factors
of 10, 100, and 500, and the SDM Genomic Testbed8 with dataset sizes of 10K,
100K, and 1M entries and a duplicate rate of 75 percent, with each element
repeated 20 times. To the best of our knowledge, there are no datasets containing
sensor data that are small enough to be mapped on IoT devices, so for this
purpose we introduce a new RML-SENSOR benchmark9 (SENS). The RML-
SENSOR benchmark simulates data produced by two sensors and includes one
metadata file. The data can be generated using small scale factors, which allows
for the evaluation of the performance of RML processors on memory-constrained
devices. All datasets used in the evaluation are in CSV format.

The SDM Genomic Testbed provides RML mappings10 with different types
of objectMaps: simple objectMaps without joins (POM), objectMaps with a self-
join (REF), and objectMaps with a join (JOIN), the abbreviations are reused
form [3]. The number of mappings of each type used is indicated by a number
followed by the type, e.g. 1POM means that the mapping consists of one simple
objectMap without join.

Metrics For R1, we evaluate the Result Size Estimator by comparing the
estimated number of generated N-Quads, obtained using various sampling prob-
abilities, against the true value of generated N-Quads and the required execution
time using the built-in chrono module. To address R2 and R3, we assess the KG
materialization performance using two parameters: elapsed wall time and max-
imum memory usage. The latter was measured by the maximum resident set
size. These parameters were evaluated on three systems with different levels of
constraint. Both parameters, elapsed wall time and maximum resident set size,

7 https://github.com/wintechis/flex-rml-evaluation/
8 https://figshare.com/articles/dataset/SDM-Genomic-Datasets/14838342/1
9 https://github.com/wintechis/rml-sensor-benchmark/

10 https://github.com/SDM-TIB/SDM-RDFizer-Experiments/tree/master/
cikm2020/experiments

https://github.com/wintechis/flex-rml-evaluation/
https://figshare.com/articles/dataset/SDM-Genomic-Datasets/14838342/1
https://github.com/wintechis/rml-sensor-benchmark/
https://github.com/SDM-TIB/SDM-RDFizer-Experiments/tree/master/cikm2020/experiments
https://github.com/SDM-TIB/SDM-RDFizer-Experiments/tree/master/cikm2020/experiments
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were obtained using the time command from the GNU time package11. Each
experiment was conducted three times, and the average values for elapsed wall
time and peak memory usage are reported. The exact hardware and software
configurations of each tested device are detailed in Table 1. Better results are
indicated by lower values in the diagram in both metrics.

Table 1. Evaluated Hardware and Systems.

Name Type Processor Memory Operating System

ESP32 IoT Device 2x240 MHz 512 KB ESP-IDF FreeRTOS
Pi 4 Edge Node 4x1.5 GHz 4 GB Raspberry Pi OS
VM Cloud 8x2.0 GHz 64 GB Ubuntu 22.04.3 LTS

5.1 Accuracy of Result Size Estimator

To evaluate R1, we performed experiments on the 100k SDM Genomic dataset
using the combination of 4POM and 5JOIN mapping rules (Fig. 2), allowing us
to evaluate the accuracy in a complex scenario combining objectMaps with and
without joins. The evaluation is performed on the cloud based virtual machine.
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Fig. 2. Accuracy of estimated N-Quads compared to the true value, indicated by a red
line, at 1,058,181 N-Quads (left) and elapsed time (right) of the Result Size Estimator
on the 100k Genomic dataset using mapping rule 4POM combined with 5JOIN.

Our results show that the estimated N-Quads follow an exponential decay
as a function of the sampling probability and converge to the true value. The
exponential decay is a result of diminishing returns in accuracy gains as the
probability of sampling, and therefore the representativeness of the sample, in-
creases; initially, small increases in probability yield significant improvements in

11 https://www.gnu.org/software/time/

https://www.gnu.org/software/time/
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estimation accuracy. However, as the probability and representativeness continue
to increase, the incremental accuracy gains slow down. On the other hand, the
execution time increases linearly with the sampling probability, which is to be
expected since a doubling of the sampling probability results in twice as much
data in the sample and thus requires roughly twice as much processing time.

In general, a higher sampling probability increases the accuracy of the esti-
mated N-Quads, but at the cost of increased computational time. Conversely,
lower sampling probabilities provide the benefit of faster estimation, but at the
cost of reduced accuracy. Balancing these tradeoffs, FlexRML chooses a default
sampling probability of 0.2.

5.2 Performance of Adaptive Hash Function Selection

To address R2, we evaluated FlexRML using an adaptive bit size selection for
the hash algorithm and compared it to FlexRML128, which represents a naive
approach where a 128-bit hash function is used uniformly for all hash algorithms.
The evaluation is performed on the cloud platform described in Table 1. For
the SDM Genomic dataset, the RML mapping for 1POM is used. All mapped
datasets produce the same output using both implementations, i.e. there are no
hash collisions.
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Fig. 3. Elapsed time (left) and peak memory usage (right) for FlexRML with Adaptive
Hash Size (Blue) vs. FlexRML with Fixed 128-bit Hash Size (Red).

The results show that the execution time of FlexRML128 is consistently
shorter compared to that of FlexRML (see Fig. 3, left diagram). This outcome is
expected, as the algorithms used in the Result Size Estimator require additional
processing time. However, as depicted in the right diagram of Figure 3, FlexRML
shows lower memory consumption when performing the mapping on all datasets,
except in the case of the GTFS500 dataset, where both approaches require a 128-
bit hash function. For instance, when mapping the GTFS100 dataset FlexRML
requires about 1 GB less memory.
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The evaluation shows that when a 128-bit hash function is unnecessary, the
use of the Result Size Estimator can reduce the peak memory usage. However,
this benefit is accompanied by an increase in processing time.

5.3 Comparison with Existing RML Processors

We perform a comparative analysis of FlexRML on three different platforms,
as shown in Table 1: a virtual machine representing a cloud environment, a
Raspberry Pi 4 representing an edge node, and an ESP32 microcontroller rep-
resenting an embedded real-time IoT device. Note that the ESP32 has 512 KB
of RAM, of which 300 KB are accessible to the heap. The comparison is made
against other state-of-the-art RML processors, specifically Morph-KGC [4] and
SDM-RDFizer [10]. Both RML processors are primarily implemented in Python,
but use libraries written in C/C++ or Rust for performance-critical parts. When
comparing FlexRML to the two RML processors, we took an outcome-based ap-
proach, focusing on comparing results using two metrics: materialization speed
and memory usage, to evaluate KG materializers regardless of their implemen-
tation language. In the following, all figures have a logarithmic scale.
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Fig. 4. Cloud: Elapsed time (top) and peak memory usage (bottom) for the SDM
genomic dataset over data sizes of 10k, 100k, and 1M.
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Cloud Environment The data on elapsed time and peak memory usage
for the SDM Genomic dataset (Fig. 4), shows FlexRML’s better performance
than Morph-KGC and SDM-RDFizer in processing predicateObjectMaps with-
out join (POMs) or with self-join (REFs), and smaller datasets. However, for
larger datasets, FlexRML is slower than Morph-KGC, and it is slower than both
Morph-KGC and SDM-RDFizer when processing large datasets with JOIN map-
ping rules. Despite this, FlexRML’s overall lower memory consumption across
all datasets is a considerable compensating factor.
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Fig. 5. Cloud: Elapsed time (left) and peak memory usage (right) for the GTFS
Madrid benchmark using scale sizes of 10, 100, and 500.

In the GTFSMadrid benchmark (Fig. 5), FlexRML shows comparable perfor-
mance to Morph-KGC in terms of processing time, while outperforming SDM-
RDFizer. In addition, FlexRML demonstrates higher memory efficiency than
the two other RML processors. The benchmarks show that FlexRML consis-
tently outperforms other leading RML processors in memory efficiency across
all datasets on cloud platforms. In situations where mappings consist entirely of
POMs, REFs, or joins that are substitutable by reference conditions, FlexRML
using the Result Size Estimator demonstrates processing speeds that are either
superior to or on par with competing processors.

Edge Environment The results from the SDM genomic dataset (Fig.6)
evaluation at the edge are consistent with those observed in the cloud. FlexRML
shows greater memory efficiency and faster performance in mapping POMs or
REFs. But for JOIN mappings, FlexRML’s execution time exceeds that of the
other two RML processors. Notably, Morph-KGC was not able to process the
5JOIN operation on the 1M dataset, due to insufficient memory of the edge.

In the case of the GTFS benchmark (Fig.7), FlexRML again stands out,
showcasing the shortest execution time and the least peak memory usage. This
memory efficiency is significant in the context of the GTFS100 dataset, where
FlexRML is the only RML processor evaluated that successfully maps the dataset
within the 4 GB RAM limitation of the Pi.
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Fig. 6. Edge Node: Elapsed time (top) and peak memory usage (bottom) for the
SDM genomic dataset. No bars indicate memory exhaustion and a process crash.
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Fig. 7. Edge Node: Elapsed time (left) and peak memory usage (right) for the GTFS
Madrid benchmark. No bars indicate memory exhaustion and a process crash.

Device Environment FlexRML is the only RML processor capable of run-
ning on real-time microcontrollers due to its implementation in C++, so only
FlexRML can be evaluated. In the device environment, the RML processor can
only use in-memory data structures because the ESP32 microcontroller has no
local storage, therefore both the RML mappings and the data to be mapped were
stored in memory. Peak memory was measured by evaluating the heap memory
used.
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Fig. 8. IoT Device: Elapsed time (left) and peak memory usage (right) for the RML-
SENSOR benchmark. Higher scales could not be mapped due to memory limitations.

The results in Figure 8 show that FlexRML is capable of processing com-
plex RML mappings, including joins, in a simple microcontroller environment.
FlexRML can map up to 550 N-Quads, using the RML-SENSOR benchmark
and a scale factor of 55, with only about 250 KB of memory. Such performance
is considered sufficient and has the potential to enable semantic interoperability
at the device level.

6 The Resource FlexRML

FlexRML is designed with several key aspects in mind to maximize usability,
community adoption, and extensibility. These aspects include:

Availability The FlexRML source code is actively maintained and publicly
available in a GitHub12 repository. FlexRML is released under the open source
GNU AGPLv3 license. To ensure long-term accessibility and to support repro-
ducibility, all releases of FlexRML are archived on Zenodo. Our future plans
for FlexRML can also be found on the GitHub page. The roadmap outlines our
upcoming features and reflects our commitment to continuous improvement and
community engagement.

Novelty FlexRML introduces a result size estimation technique for con-
structing KGs. The result size estimation feature is particularly important for
devices with limited memory. Through this optimization and the implementation
in C++, FlexRML expands the range of devices capable of mapping non-RDF
data to RDF by focusing not only on unconstrained cloud environments, but also
on resource-constrained devices and microcontrollers, a domain not previously
explored by existing RML processors.

Reusability FlexRML is designed with accessibility and ease of use in mind.
Documentation, usage examples, and configuration files for various use cases are

12 https://github.com/wintechis/flex-rml

https://github.com/wintechis/flex-rml
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available in the GitHub repository, making it easy to use the resource. To further
enhance user experience, prebuilt executables for multiple platforms are avail-
able. These executables align with the familiar process of installing or running
programs for many users. By offering prebuilt versions, we eliminate the need
to set up a build environment or install a specific language interpreter, tasks
that require technical expertise. Each release of FlexRML is validated against
the latest RML test cases to ensure full compliance with the RML specification.

Versatility FlexRML uses a modular design that allows future enhance-
ments, including the ability to handle additional data types such as JSON and
XML. To handle each data encoding, a dedicated reader must be implemented.
The reader is responsible for converting the read data to FlexRML’s internal
vector-based data representation. The FlexRML core can also be adapted to
specific needs, as we have done with the CLI and ESP32 versions. The CLI
version has an additional C++ file that handles command line arguments and
calls the correct FlexRML functions based on the parameters, while the ESP32
version does not need CLI argument processing, but rather uses microcontroller
specific libraries enabling, for example, serial communication.

7 Conclusion and Future Work

We introduced FlexRML, a flexible and memory-efficient resource for executing
RML mappings to materialize KGs on a variety of devices, spanning different
levels of constraints. FlexRML expands the range of devices capable of producing
RDF, including those previously unable to run an RML processor. Our empirical
evaluation shows that using the result size estimation algorithm reduces memory
consumption compared to a naive fixed bit size approach, by allowing the use
of smaller bit sizes in the hash function for duplicate removal without losing
output quads. Additionally we found that FlexRML, using the adaptive bit size
selection and memory advantages of C++, consistently shows lower peak memory
consumption across different datasets when benchmarked against leading RML
processors, and offers faster or comparable execution times. Looking ahead, our
future development efforts will focus on implementing support for additional
data formats, with a particular focus on JSON, incorporating compliance with
the new RML specification, and reducing the execution time of non-substitutable
joins by implementing join optimizations. In addition, an interesting future re-
search direction we want to explore is the combination of mapping partitions
and result size estimation to further improve memory efficiency.
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