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Abstract. HDT is a popular compressed file format to store, share and
query large RDF Knowledge Graphs (KGs). While all these operations
are possible in low hardware settings (i.e. a standard laptop), the gener-
ation and updates of HDT files come with an important hardware cost
especially in terms of memory and disk usage.
In this paper, we present a new tool leveraging HDT, namely k-HDTDiffCat,
that allows to a) reduce the memory and disk footprint for the creation
of HDT files and to b) remove triples from an existing HDT file thus
allowing updates.
We show that in a system with 8 times less memory, we can achieve
HDT file generation in almost the same time as existing methods. More-
over, our system allows to remove triples from an HDT file catering for
updates. This operation is possible without the need to uncompress the
original data (as it was the case in the original HDT file) and by keeping
low memory consumption.
While HDT was suited for storing, exchanging and querying large Knowl-
edge Graphs in low hardware settings, we also offer the novel functional-
ity to generate and update HDT files in these settings. As a side effect,
HDT becomes an ideal indexing structure for large KGs in low hardware
settings making them more accessible to the community.
In particular, we show that we can compress the whole Wikidata graph,
which is the largest knowledge graph currently available, on a standard
laptop with 16 GB of RAM as well as generate Wikidata indexes that
are at most 24 hours behind the live Wikidata endpoint.

Keywords: HDT · HDTq · HDTCat · HDTDiff · LUBM · Wikidata ·
Update

1 Introduction

RDF Knowledge Graphs (KGs) are growing in size, storing and querying them
becomes increasingly challenging. For example, the amout of triples in the Wiki-
data KG increased from 18 billion to 19.2 billion in the last year. Moreover,
serving large graphs can easily become expensive in terms of hardware resources,
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making them inaccessible for consumers in low hardware settings, thus impeding
the democratization of the Web.

To overcome this problem, the HDT file format was created[11]. HDT uses
succinct data structures[15] to store RDF graphs. The aim of succinct data struc-
tures is to compress the underlying dataset as much as possible while preserving
the query capabilities. In the case of HDT, it is possible to compress RDF graphs
to similar sizes as a GZIP compressed NTriple file while allowing to search for
triple patterns at a speed that is in the same order of magnitude of common
triple stores. As a concrete example, it is possible to compress the whole Wiki-
data KG to an HDT file of 300 GB and have a triple pattern access that is equal
or faster then the one of the public Wikidata query service.
This explains why HDT is used as the backbone of past projects where scala-
bility becomes a problem. For instance in the LOD laundromat[2] in order to
expose datasets in the LOD cloud, for question-answering engines [3] and as an
indexing structure of Linked Data Fragments [20]. HDT was also used to store
the 28 billion triples dump of the LOD cloud called LOD-a-lot[9].

HDT is used to provide large data, for example in LOD laundromat, providing
an infrastructure to clean and serve all datasets in the LOD cloud and LOD-a-
lot[9], an index of the whole Linked Open Data cloud published as HDT. For the
question answering system WDAqua-core1[5], a question answering system that
allows to query some of the largest datasets in the LOD cloud, namely: DBpedia,
Wikidata, MusicBrainz and DBlp. But HDT is mostly use for triple stores and
RDF graph querying like Linked Data Fragments[21] to query the Web of data
on Web-scale by moving the query load from servers to clients, qEndpoint[22] a
SPARQL endpoint that uses HDT as an underlying index and OSTRICH[19], a
hybrid archiving approach for RDF (Resource Description Framework) graphs.
It is designed to provide efficient triple pattern queries for different versioned
query types while keeping storage requirements reasonable.

The key contribution of the paper is k-HDTDiffCat, a new method to com-
bine and delete triples from one or multiple HDT files into a new one. Unlike
HDTCat[4], a method to combine two HDT files into one HDT file, our method
allows to combine an arbitrary number of HDT files while keeping a small time
overhead per added HDT file. It allows to create big HDT files by splitting the
HDT generation into small HDT files.The small HDT files are then merged with
k-HDTDiffCat into one HDT file. Moreover k-HDTDiffCat allows also to elimi-
nate triples from already generated HDT files.
With provide experiments showing the efficiency of our method compared with
previous implementation in systems with few resources.

While storing, exchanging and querying HDT files is easy in low hardware
settings, this is not the case for the generation and updates. The tool presented
in this paper fills exactly this gap, i.e. allowing to efficiently generate and update
HDT files in low hardware settings. The paper is organized as follows.

We will first explain the HDT internals in Section 2, in Section 3 we discuss
the related works, in Section 4 we present our tool, in Section 5 we present
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our experimental results and within Section 6 a presentation of the open source
repository where to find our tool with a command line to use it.

2 HDT internals

Before describing the related works and our contribution, we describe on a high
level the internals of a HDT file. HDT [12,11] is a file format to compress an
RDF graph while keeping the ability to query over it by triple patterns, it is
composed of 3 components. The header component, the dictionary component
and the triples component.

Fig. 1: The different HDT and HDTq
components in the dictionary part.

Fig. 2: The different HDT and HDTq
components in the triples part.

Header It contains metadata information about the HDT file like the number of
RDF terms, the raw size, the number of distinct subjects, etc. Due to the trivial
aspect of this component, we won’t consider it in the future sections.

Dictionary (Figure 1) It contains a mapping between the terms in the RDF
graph (i.e. URIs, Literals and Blank Nodes) and numerical IDs.
The default dictionary is called Four Section Dictionary (FSD), previous HDT
Dictionary[13] is composed of four sections: Shared (SH), Subjects (S), Predi-
cates (P) and Objects (O). The Shared section contains all terms that appear
both as a subject and as an object inside the graph. The subject section contains
terms that appear exclusively in the subject position. Similarly with the object
section, only containing the term appearing at the object position. The predicate
section contains all terms contained in the predicate position. In each section the
terms are sorted lexicographically and compressed using Front-Coding [24] which
is a technique based on differential compression over the string prefixes.
Other dictionary implementations exist called Multiple Section Dictionaries (MSD)[18].
These versions are based on the FSD above, but are splitting the literals in the
object section by data-types or language. This saves space by grouping the liter-
als with the same datatypes and allows quick retrieval of the literals of a given
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datatype or language while allowing a fast lookup of a datatype or language
using the literal numerical ID.

Triples (Figure 2) It contains the triples encoded with the above IDs using adja-
cency lists. On a high level these are lists of triples sorted by subject-predicate-
object (i.e. an SPO index). These are stored in a compressed format using two
bitmaps and two sequences. The shared section terms are represented by adding
to non-shared subject/object terms the count of shared terms. If the ID is lower
than the shared terms count, it means the ID is representing the position inside
the shared section. If the ID is greater than the shared terms count, it means
the ID is representing a subject or an object.

Overall one can summarize HDT contains two components, the Dictionary
component and the Triples component that use a global ordering to store and
compress the data.

2.1 HDTq

HDTq[10] is an extension of HDT to allow the storage of named graphs or quads.
In the dictionary, it adds another sorted section to store the named graphs.

(HDTq dictionary part of Figure 1)
In the triples component, this new section of n named graphs is reflected

with n bitmaps that have a length corresponding to the number of triples. Each
bitmaps indicates with 1 if the corresponding triple is in the named graph associ-
ated with the bitmap. These bitmaps are compressed using Roaring bitmaps[17].
(HDTq triples in Figure 2)

Another version of HDTq exists using one bitmap per triple instead of one
bitmap per named graph. We do not consider this version because it was getting
worse results than the one bitmap per named graph version.

3 Related work

We first describe the current methods to compress an RDF file into HDT and
then describe general RDF graph indexing methods. There are currently 3 meth-
ods to compress an RDF file to HDT. rdf2hdt [12], is the original implementation
used to compress an RDF file to HDT. This implementation is fully in mem-
ory. It basically performs a lexicographic sorting of the terms (URIs, Literals,
blank nodes) for the dictionary and of the IDs in SPO order in the triples.
HDT-MR[14], is an implementation using a MapReduce setup to compress large
dataset into HDT. This algorithm can only be executed on a MapReduce clus-
ter. This requirement is a hard stop for users having access only to commodity
hardware. HDTCat [4], is an algorithm to merge 2 HDT files together without
the need to uncompress the data. This method was used to compress large HDT
files by creating small HDT files and combine them recursively into one big HDT
file. There are no methods to delete triples from an existing HDT file without
uncompressing the dataset.
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Besides methods to compress RDF graphs to HDT, the most related works in-
clude triple store indexing strategies. In these cases the RDF graph is stored
into some internal indexing structure that is subsequently used to query it via
SPARQL. Typical indexing structures are:

– B+-trees like Blazegraph1, Apache Jena2 or RDF4J Native Store3.
– Storing the graph into a SQL database, like Virtuoso[6].
– Custom binary structure, for example inside QLever[1] using a read-only

compressed data structure.

Overall these indexing strategies are memory intensive making it difficult to run
them on commodity hardware.

4 Contribution

In this paper, we present k-HDTDiffCat, a new tool that allows to merge and
update multiple HDT files. In combination with an indexing algorithm, it can
be used to compress and update large HDT files in low hardware settings. More
precisely, we provide the following contributions:

1. Allow to combine multiple HDT files together at the same time.
2. Allow to subtract triples from HDT files.
3. Extend these algorithms also for named graphs.

4.1 k-HDTCat

While all functionalities are integrated in the same tool, we first describe the
functionality of k-HDTCat, i.e. merging together mutliple HDT files.

Dictionary generation An HDT dictionary is composed of multiple sorted
sections. Inside each section the RDF terms respect multiple properties,

1. An RDF term is unique in its section. (No duplicated term)
2. If an RDF term is used as a subject and as an object, it is inside the shared

section and doesn’t appear inside a subject or an object section.
3. An RDF term is represented by its position or index in the section.

We describe in the following how we merge multiple HDT files named HDT1 . . . HDTk

with Shared, Subject, Object and Predicate sections named respectively SH1 . . . SHk,
S1, . . . Sk, O1, . . . Ok and P1, . . . Pk.

As all sections are sorted, we create iterators over each section type. itSH is
an iterator over all shared sections (SH1, . . . SHk) that returns all terms of the
shared sections sorted without duplicates using a merge join. Analogously we
1 https://blazegraph.com
2 https://jena.apache.org/index.html
3 https://rdf4j.org/

https://blazegraph.com
https://jena.apache.org/index.html
https://rdf4j.org/
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create itS for subjects, itO for objects and itP for predicates. By comparing itS
and itO we can compute the terms that need to be moved into the new shared
section SHnew with the already shared terms from itSH . All terms that are not
moved to this section will remain in the Snew, Onew sections respectively. With
that, we respect the properties 1 and 2.

Added to this method, we keep track of the original term index with the origin
HDT IDs and sections, so when we compute the end section Snew, Onew, SHnew

and Pnew, we have both the old and new IDs of each term. Using them, we create
4 arrays MSec,HDT , one per HDT file and section Sec ∈ {S,O, P, SH}, HDT ∈
{HDT1, . . . HDTk}. We call them “maps” and we fill them using the origin term
location i.e. ID/Section/HDT file as the index and the new location and if the
term is shared for the value. MSec,HDT [OldID] = (NewID, IsShared).

With this task done, we have now access to the new sections for the dictionary
with a mapping between the old and the new term’s indexes.

Triples component generation The dictionary being created, we need to
build the triples component, for this part, we extended the HDTCat[4] algorithm
to handle multiple triples by using a merge join. First we read the triple ids
from the HDT files into multiple stream mapped using MSec,HDT , the arrays
created during the dictionary creation. Before merging them, we need to take into
consideration that a subject or object term can become a shared term leading
to our ids in our streams to be unsorted due to the shared IDs representation
defined in the triples paragraph in section 2.

To fix that we split our streams into two different streams. A stream with
the triples with shared subjects and a stream with the triples with non-shared
subjects. Once this is done, we use a merge join to create two streams from all
the streams, removing the duplicated terms at the same time.

This solves the unsorted problem for the subject terms, not for the object
terms. To sort again the objects, we can use the fact that our triples are sorted
by subjects and predicates, so if we peek from our stream all the triples with the
same subject and predicate, we can retrieve all the unsorted objects for a given
(subject, predicate) couple. This number of objects is usually small compared to
the triples count, so we can sort them in memory and stream the sorted results.

The result streams being sorted, we can create our triple component.

Large file indexing using k-HDTCat Using this new algorithm version, we
can combine multiple HDT files into one. Removing the overhead added by the
generation of the HDT file, but inducing the overhead of reading multiple HDT
files at once. We made the hypothesis that this added overhead isn’t as big as the
one removed from the original HDTCat. This can be used to index big HDT files
by first chunking the data and indexing smaller HDT files and then combining
them to create a bigger HDT file using k-HDTCat. A comparison with existing
methods is available in Section 5.2.
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Fig. 3: k-HDTCat Merge streams

Fig. 4: k-HDTDiffCat Merge streams

4.2 k-HDTDiffCat

The main drawback of HDTCat is the fact that it is only providing the addition
on datasets, but not the ability to remove triples from datasets. To do it, one is
forced to reindex the dataset without the unwanted triples.

To overcome this missing part, we created k-HDTDiffCat, a modified version
of k-HDTCat to remove triples from one or multiple HDT files into one HDT
file. It is built on top of k-HDTCat.

Dictionary generation Unlike k-HDTCat, during a diff, an RDF term can be
removed from the dictionary of a HDT file, leading to 3 cases,

1. The term is still used at least once in the same section, in which case nothing
should be done.

2. The term was a shared term, but now it is only an object or a subject, then
we need to consider its sharedness loss.

3. The term isn’t used anywhere in the dictionary, then we need to completely
remove it.

To mark a triple to be deleted, we are using a bitmap per HDT file. If the bit
at the index i is set to 1, it means that the triple at the index i will be removed
from this HDT file.

To compute the deleted triples, we first create one bitmap per section per
HDT file, a bit set to 1 in a bitmap represents if an term is used inside the
section. We then fill the bitmaps by reading the triples for each HDT file while
ignoring the ones with the same position as a 1 in the triples bitmap for this
HDT.

With these bitmaps, when we are reading a section, we only have to check
first if this term should be read or ignored.

Due to the property 2, we need to check if a shared element is still shared
after the diffcat. To do that, as represented in figure 4, we are merging the shared
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Data: itS , itO two sorted iterators of respectively subjects and objects terms.
Result: it′S , it′O, it′SH , three sorted iterators of the final subjects, objects and

shared terms.
it′S ← ∅ it′O ← ∅ it′SH ← ∅
SharedLoop: while itS ̸= ∅ and itO ̸= ∅ do

NewSubject← Next(itS) NewObject← Next(itO)
while NewSubject ̸= NewObject do

if NewSubject < NewObject then
it′S ← it′S ∪ {NewSubject}
if itS = ∅ then

break SharedLoop
NewSubject← Next(itS)

else
it′O ← it′O ∪ {NewObject}
if itO = ∅ then

break SharedLoop
NewObject← Next(itO)

it′SH ← it′SH ∪ {NewSubject}
while itS ̸= ∅ do

it′S ← it′S ∪ {Next(itS)}
while itO ̸= ∅ do

it′O ← it′O ∪ {Next(itO)}
Algorithm 1: Split subject/object iterators into subject/object/shared it-
erators

term iterator itSH with both the subjects itS and the objects itO iterators. As
described in algorithm 1, by comparing the two iterators in a merged way, k-
HDTDiffCat is able to recompute the shared terms with the subjects/objects
when merging the HDT files by comparing when two elements in the iterators
are equal.

We then run the k-HDTCat method to compute the dictionary without using
itSH at the end because it was already used at the start.

Triples generation Like in the dictionary generation, we are reusing the k-
HDTCat method to compute the triples, we add to the triple reading and map-
ping part a check reading the input delete bitmap to see if the read triple is
deleted or not. If it is deleted we ignore the triple, otherwise we continue the k-
HDTCat method. The k-HDTCat method already taking care of the sharedness
“loss” with the same strategy as the sharedness “gain”.

Complexity The k-HDTDiffCat method being close to HDTCat[4], it is re-
flected with a same time and space complexity. In HDTCat, for n,m the number
of triples in the two input HDT files, the time complexity is O((n+m) log(n+m))
with at best O(n+m) and the space complexity is O(n+m). Unlike HDTCat,
we don’t have a constant amount of input HDT files. We denote the complexities
using n, the number of all triples in the input HDT files and we add to the def-
inition m, the number of all RDF terms in the input HDT file dictionaries. We
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will first explain the time complexity for the triples generation, then the time
complexity for the dictionary generation and the space complexity.

The input dictionaries being already sorted, computing the union of them is
done using a merge fashion and thus, giving a complexity of O(m).
The triples generation is done by grouping the triples with the same subject-
predicate couple and then sort these groups. The worst case scenario is only one
group giving a time complexity of O(n log n). In the best scenario, where all the
groups are containing a constant amount of triples, the time complexity is O(n).
By combining both the dictionary and triples generation, the time complexity is
O(m+ n log n).

The space complexity is given by the space required to store the new HDT
file sections, which is O(m) for the dictionary and O(n) for the triples. The
combined space complexity is O(m+ n).

4.3 HDTq integration

To integrate HDTq inside these two methods, we need to consider the new graph
section and the graph bitmaps inside the triples (or quads) section.

The graph section is compressed like all the other sections and isn’t merged
with a shared section, so we can apply our merge join with or without the section
delete bitmaps depending on if we are deleting triples or not using k-HDTDiffCat.

For the quads, in k-HDTDiffCat, we are already sorting in memory the ob-
jects ids by grouping them by (subject, predicate) because the memory impact
is low. But we can also notice that the memory impact for grouping the quads
ids by (subject, predicate) is also low so we can extend the triples generation of
k-HDTCat to sort the graphs with the objects.

The main issue comes with the deletion bitmap, HDTq files not being based
on a triple list, but on a quad list, we now consider our delete bitmap as a 2D
matrix (i, j) instead of a 1D list (i), the i staying the triple id, but we add the
j to denote the graph id. To construct this matrix, like in HDTq[10], we used
Roaring bitmaps[17] to avoid having to have full matrix lines with only few bits
because named graphs are only containing few triples.

5 Experiments

To evaluate HDTDiffCat we run four different experiments. Their codes are
available on Github4.

1. This experiment aims to determine the best value of k when compressing a
dataset using k-HDTCat.

2. In this experiment we compare our compression methods with the existing
ones, i.e. rdf2hdt [12], HDT-MR[14] and HDTCat[4].

3. This experiment compares the compression process we propose with other
compression methods, using as an example the Wikidata dataset.

4 https://github.com/ate47/kHDTGenDiskBenchmark

https://github.com/ate47/kHDTGenDiskBenchmark
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4. This experiment shows how it is possible to use k-HDTDiffCat to create an
up to date HDT file of Wikidata with a max delay of 24 hours.

5.1 Experiment : Experimentally determine a good value of k in
k-HDTCat

This first experiment was made using the LUBM benchmark[16]. LUBM is a
benchmark for SPARQL that allows to generate synthetically an RDF graph
with different sizes. The size is generally indicated by the number of universities
contained in the graph. We use a small LUBM dataset of 1000 universities, giving
us a dataset with 133.5 million RDF triples. We then split this dataset into small
datasets of 1 million triples converted into HDT files, giving us n = 134 HDT
files. We then run k-HDTCat in a k-way merge fashion to create one HDT file
from all the 134 HDT files by using different k. We run our experiments on
a KVM virtual machine with 16GB of RAM with 1TB of SSD with 4 vcpu
Intel(R) Xeon(R) CPU E5-2667 v4 3.20GHz in a University server. The results
are reported in the Table 1.

k layers cats time (s) average (s)
2 8 132 2264 2264
4 4 44 1245 1245
8 3 19 987 97110 14 955
12

2

12 849

854
20 7 805
28 5 840
36 4 890
44 4 884
134 1 1 1135 1135

Table 1: Time in function of the k and the number of layers

We used 4 different metrics, the number of k-HDTCat (cats) used obtained
with ⌈n−1

k−1 ⌉, the number of layers in the k-ways tree, obtained with ⌈logk(n)⌉, the
time to create the HDT file for a given k value and the average time for a given
layer count. We notice that the time to merge the HDT files can be divided by 2
with a good k choice. We can also see that the time is linked with the number of
layers during the k-ways merge, a large number of layers is increasing the time,
the results for k = 10 and k = 12 is also showing that the number k-HDTCat
has less impact than the number of layers. We can also see that, after a certain
point the higher the number of HDT file is, the slower the method is, the HDT
files being mapped from disk, the higher the number is, the higher the number
of file pointer is, reducing the speed.

In our future experiments, we will set k = 20, this k being the one with the
best time.



Generate and Update Large HDT RDF Graphs 11

5.2 Experiment : Comparison with existing HDT compression
methods

To compare our approach with existing methods for compressing HDT file, we
follow the same procedure as in the HDTCat and HDT-MR papers. The idea
is to measure the time to compress different sizes of the data generated in the
LUBM benchmark[16]. Following existing evaluations we try to generate an HDT
file for the LUBM dataset with a university count of 1000, 2000, 3000, ..., 8000
(i.e. with a step of 1000 universities), then from 8.000, 12.000, 16.000, ...., 40000
(i.e. with a step of 4.000 universities). This gives us different datasets with sizes
from 130 million triples to 5.3 billion triples. For the other approaches we do
no replicate the results but report the results from the previous papers. We
run our experiments on the same machine as the one described in the previous
experiment in Section 5.1. Each experiment was run 3 times and reported using
the average and standard deviation. The results are reported in Table 2. We see
that despite using only a 16GB RAM machine we are outperforming the original
HDTCat implementation running on both a machine with 16GB and 128GB of
RAM. The map reduce setup is still more competitive by 65% but uses a map
reduce cluster with 8 times more memory. Overall we can see that we are able
to compress big datasets on commodity hardware using only one machine.

LUBM 128GB 16GB

Univ. Triples HC128 HMR HC16 kHC
Avg SD

1k 0.13B 1856 936 8082 1305 74
2k 0.27B 2257 1706 11622 2878 36
3k 0.40B 3695 2498 15616 4791 377
4k 0.53B 5285 3113 19928 6041 173
5k 0.67B 7058 4065 24400 7556 168
6k 0.80B 8960 4656 30235 9046 39
7k 0.93B 11018 5338 - 10501 83
8k 1.07B 13308 6020 - 11955 149
12k 1.60B 19777 9499 - 19355 1057
16k 2.14B 26825 13229 - 26078 1480
20k 2.67B 34486 15720 - 32777 1959
24k 3.20B 42789 26492 - 43006 550
28k 3.74B 51807 36812 - 50116 1362
32k 4.27B 61366 40633 - 57736 1727
36k 4.81B 72161 48322 - 65641 1706
40k 5.32B 84633 55471 - 73110 2081
HC: HDTCat, HMR : HDT-MR, kHC : k-HDTCat, Avg : average, SD : standard

deviation.
Table 2: Comparison in seconds (s) between methods to serialize RDF graphs
into HDT using HDTCat[4], HDT-MR[14] and k-HDTCat
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5.3 Experiment : Indexing Wikidata

In this section, we want to show how we compare with respect to indexing strate-
gies of other SPARQL endpoints.
To do this, we want to see how our approach behaves on indexing the whole
Wikidata dump. This is seen as a challenging problem. As reported in [8] there
is only a limited number of successful attempts to index the whole of Wikidata
on existing triple stores since most do not scale to KGs of this size (even with
large hardware configurations). In the year 2020 the Wikidata dump surpassed
13B triples. Since then only 6 triple stores have been reported to be capable
of indexing the whole dump, namely: Virtuoso [7], Stardog5, Apache Jena 6,
QLever[1] and Blazegraph. We report in Table 3 the loading times, the number
of indexed triples, the amount of needed RAM, the final index size and the doc-
umentation for indexing Wikidata.

System Loading Time #Triples RAM Index size Doc
Apache Jena 9d 21h 13.8 B 64 GB 2TB 7

Virtuoso “several days“8

(preprocessing)
+ 10h

11.9 B 378 GB NA 9

Blazegraph ∼5.5d 11.9 B 128 GB 1.1 T 10

Stardog 9.5 h 16.7 B 256 GB NA 11

QLever 14.3 h 17 B 128 GB 823 GB 12

qEndpoint 57 h 19.2 B 16 GB 340 GB 13

Table 3: Wikidata Index characteristics for different endpoints.

Using k-HDTCat we were able to index the Wikidata public dump from
February 2024 with 19.2 billion triples14. The experiment was run on a 16GB
desktop computer with a 12 cores AMD Ryzen 5 5600 3.50GHz CPU and 1TB
of SSD. The experiment was repeated two times, the average time and standard

5 https://www.stardog.com/
6 https://jena.apache.org
7 https://wiki.bitplan.com/index.php/WikiData_Import_2020-08-15
8 The precise number of days for the preprocessing is not indicated in the documen-

tation.
9 https://community.openlinksw.com/t/loading-wikidata-into-virtuoso-open-source-

or-enterprise-edition/2717
10 https://addshore.com/2019/10/your-own-wikidata-query-service-with-no-limits/
11 https://www.stardog.com/labs/blog/wikidata-in-stardog/
12 https://github.com/ad-freiburg/qlever/wiki/Using-QLever-for-Wikidata
13 https://github.com/the-qa-company/qEndpoint/wiki/Use-qEndpoint-to-index-a-

dataset
14 https://dumps.wikimedia.org/wikidatawiki/entities/

https://www.stardog.com/
https://jena.apache.org
https://wiki.bitplan.com/index.php/WikiData_Import_2020-08-15
https://community.openlinksw.com/t/loading-wikidata-into-virtuoso-open-source-or-enterprise-edition/2717
https://community.openlinksw.com/t/loading-wikidata-into-virtuoso-open-source-or-enterprise-edition/2717
https://addshore.com/2019/10/your-own-wikidata-query-service-with-no-limits/
https://www.stardog.com/labs/blog/wikidata-in-stardog/
https://github.com/ad-freiburg/qlever/wiki/Using-QLever-for-Wikidata
https://github.com/the-qa-company/qEndpoint/wiki/Use-qEndpoint-to-index-a-dataset
https://github.com/the-qa-company/qEndpoint/wiki/Use-qEndpoint-to-index-a-dataset
https://dumps.wikimedia.org/wikidatawiki/entities/
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deviation are used as a metric. The compression time was 52 hours. The com-
pression time is the third best between the reported once. On the other hand,
this compression was achieved on a commodity hardware with 16GB of RAM
which is from 8 to 23 smaller than other approaches. The final index size of 340
GB is the smallest between the reported ones.
We measured the total time for the different generation steps. The k-HDTCat
generation steps are dict for merging and writing the dictionaries, triples for
merging and writing the triples and save to write the end HDT file. This results
are reported in Table 4.

Method Section Time (s) Time SD Percent. Total (s) Total SD Percent.
HDT file Generation - 104449 1124 59,68 %

k-HDTCat
dict 18964 478 26.87 %

70582 1498 40,32 %triples 42767 1092 60.6 %
save 8837 73 12.52 %

Total - 175032 378 100 %
SD = Standard deviation

Table 4: Time split per part during WD compression

We can see that most of the time is used to compress the small HDT files.

5.4 Experiment : k-HDTDiffCat to keep up to date datasets

Step Diff only time (s) Cat only time (s) DiffCat time (s)
Diff bitmap 501 - 462
Dictionary 2121 2155 2206

Triples 4446 3401 4352
Total 7068 5556 7020

Table 5: Times per part to compute HDTDiff over a Wikidata Truthy HDT file
with 371M changed triples.

A way to keep RDF graphs up to date, is by using buffer updates, i.e. adding
and deleting the changes over time in a buffer and by applying all of them at the
same time. In this experiment we are using the Wikidata recent changes API15
to fetch the recent changes from the Wikidata dataset[23] and combine them
with an HDT dump of the Wikidata dataset.

For our experiment, we are using a Wikidata truthy dump from 2023-10-28
00:40 (CET) and the recent changes changes from the dump date to the 2023-
11-06 14:00. This accounts for 2, 509, 863 Wikidata entity changes. We create a
15 https://www.mediawiki.org/wiki/API:RecentChanges

https://www.mediawiki.org/wiki/API:RecentChanges
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Step 1 2 3 4 5 6 7
Diff bitmap 581 553 530 525 550 552 548
Dictionary 2873 3006 3219 3371 3615 3739 3959

Triples 6157 6416 6863 7149 7661 8083 8161
Total 9611 9975 10612 11045 11826 12374 12668

Added time - +4% +10% +14% +23% +28% +32%

Table 6: Times (s) per part to compute k-HDTDiffCat over a Wikidata Truthy
HDT file with 371M changed triples using different counts. The added time is
compared with the time to compute a k-HDTDiffCat with 2 HDT files.

bitmap for the HDT triples, when an entity e is changed, we mark as removed
by a 1 in the bitmap all the triples matching the pattern (e, ?, ?). We put in a
new HDT file the triples with e as a subject by getting them from Wikidata.
This gives us 371.278.906 added triples inside what we call the “Delta” HDT file.

Using these datasets, we did four experiments to test the efficiency of k-
HDTDiffCat, they were done on a 16GB laptop with 200GB of SSD available.

The first one was to only apply the HDTDiff part on the Truthy Wikidata
HDT file with the delete bitmap. This allows to see the speed of only the diff
part. A second test is made by running the HDTCat part on the HDTDiff result
with the delta graph. Giving a time on how fast the HDTCat part is working, it is
not made on the first Truthy Wikidata HDT file to avoid duplicated terms. The
third is to run both algorithms to compare how fast is the couple k-HDTDiffCat
vs HDTCat + HDTDiff. The results of these experiments are available in table 5.
In the table, the time to compute each HDT section is mentioned with the total
time to run the method, the diff bitmap building is omited in the cat because
we aren’t running a diff method.
The results of these three experiments are available in Table 5. We can see that
HDTDiff is adding an overhead to HDTCat, we believe that it is due to the
bitmap reading to test if an term is in the result HDT file. Another result is
the time difference between HDTDiff only + HDTCat only and k-HDTDiffCat,
showing that it is pertinent to use k-HDTDiffCat instead of HDTDiff and then
HDTCat when building a new HDT file.

A fourth experiment is done to understand how the increasing count of HDT
files is affecting our method. To do that, we first split our delta HDT file into 7
pieces and we run the k-HDTDiffCat on the truthy HDT file and i pieces, with
i = {1, . . . 7}. The results of this experiment are available in Table 6. The diff
being only done on the input HDT file, the time to compute the diff bitmap is the
same for all the steps. We then notice an increase in time for each added HDT
file between 4 and 9 percents added to the time to compute two k-HDTDiffCat.
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6 Code

k-HDTDiffCat and its HDTq support are part of the qEndpoint core repository
16. A fork of the Java HDT library17. It is used in qEndpoint, a SPARQL
endpoint based on HDT and RDF4J. The code is released under the Lesser
General Public License. The tool is available as a command line interface18

together with existing tools like rdf2hdt, hdt2rdf, hdtInfo, hdtVerify. The new
tool can be used as:

hdtDiffCat <input files> -diff <delta file> <output HDT file>

The input files are the HDT files to combine, an additional HDT file can be
added to tell which triples to delete.

It can also be used as a lightweight library without the endpoint for more
specific operations.

7 Conclusion

HDT is an RDF file format that allows to store, share and query large RDF
Knowledge Graphs on commodity hardware. In this paper, we presented a new
tool, k-HDTDiffCat, a generalization of HDTCat to combine multiple HDT files
and to remove some of the existing triples.

It is available online as a command line interface or by using our Java library
in the qEndpoint repository19 under the Lesser General Public License. We have
shown how this tool can be used to compress HDT file and how it compares
with respect to existing methods. We have also compared the HDT compression
with the indexing strategies of other performant SPARQL endpoints. Finally, we
have seen how they can be used to maintain an up-to-date Wikidata index. To
conclude, k-HDTDiffCat allows generating and update HDT files on commodity
hardware, something that was not possible before. This is particularly important
since now all operations in the HDT life-cycle can be carried out on commod-
ity hardware. As a consequence HDT becomes an ideal indexing structure for
large KGs in low hardware settings allowing the community to manipulate these
graphs more easily.
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