
SousLeSens - a Comprehensive Suite for the
Industrial Practice of Semantic Knowledge

Graphs

Claude Fauconnet1[0009−0005−8712−4536], Jean-Charles
Leclerc2[0000−0002−2333−7859], Arkopaul Sarkar3[0000−0002−8967−7813], and

Mohamed Hedi Karray4[0000−0002−9652−5164]

1 SousLeSens, France
2 TotalEnergies, France

3 Knowledge Graph Alliance, Brussels, Belgium
4 Université de Technologie de Tarbes, Tarbes, France

Abstract. Over recent decades, the advancement of semantic web tech-
nologies has underscored the increasing importance of tools dedicated
to developing and managing the foundational components of the seman-
tic web stack. Addressing the evolving needs, a variety of tools have
emerged from the research and development projects from academia as
well as commercial software vendors. These tools offer a diverse range
of services tailored to the management of various aspects of semantic
knowledge graphs. Despite this proliferation, feedback from stakeholders
involved in public and privately funded projects has highlighted notable
shortcomings in existing tools. These gaps become evident in two key
areas: firstly, the user experience struggles to scale up to meet industrial-
level data practices and knowledge engineering methodologies. Secondly,
a lack of interoperability and compatibility among the existing task-
specific tools leads to elevated costs and efforts. This paper introduces
a novel semantic knowledge management ecosystem embodied in a suite
of tools collectively known as ’SousLeSens’. Unlike its counterparts, SLS
not only provides comprehensive coverage of typical knowledge engineer-
ing tasks while adhering to best practices for ensuring quality but also
boasts a purely visual (no to minimum-code) interface. This feature is
particularly well-suited for handling large-scale, industry-grade semantic
data models. The paper delves into the establishment of requirements
for knowledge engineering tools and services, derived from recent stake-
holder surveys. It proceeds to present the SLS toolkit, elucidating its
architecture and operational protocols. Finally, the paper validates the
toolkit’s capabilities by comparing it with existing tools against prede-
fined requirements and illustrating various use cases.

Keywords: ontology editor · knowledge graph · SousLeSens · protege ·
semantics.



2 C. Fauconnet et al.

1 Introduction

In the evolving landscape of semantic web engineering tools, there exists a press-
ing need for solutions that can seamlessly navigate the intricacies of constructing
and managing the foundational elements of the semantic web stack. Despite the
emergence of various tools from both academic and commercial spheres, feed-
back from stakeholders has consistently highlighted notable shortcomings [1].
These deficiencies manifest themselves primarily in the struggle to scale user ex-
periences to meet industrial-level data practices and the lack of interoperability
among existing, task-specific tools, resulting in increased costs and efforts.

Against this backdrop, this paper introduces ’SousLeSens’ (SLS), a collab-
orative semantic knowledge management (KM) ecosystem specifically designed
to address the identified gaps in the current tool landscape. Unlike its counter-
parts, SLS not only comprehensively covers many typical knowledge engineering
tasks, but also lets users to use a visually driven, minimal-code interface tailored
for handling large-scale, industry-grade semantic data models. The Semantic
Labeling System (SLS) was developed as part of the TotalEnergies Semantic
Framework (TSF) project [7] to address the need for a set of tools that comply
with the best practices in knowledge engineering while also being user-friendly
and easy to learn for professionals in the industry.

In this paper, we first identified the requirements of a comprehensive KM
tool by exploring both the past literature and industrial expectations in Section
2. Afterwards, in Section 3, the methodological principle and technical architec-
ture of SLS is presented. In Section 4, three industrial use cases are presented
to demonstrate the capabilities of SLS. Finally, a comparative analysis of SLS
against other similar products is presented in Section 5.

2 State-of-the-art

The realm of KM tools is diverse, mirroring the variety of methods, languages,
and formats for knowledge management. The aim of the section is however not
to analyse these tools individually but to identify the requirements for a compre-
hensive KM tool from the past surveys and industrial feedback. SLS gathered
these requirements from two sources: 1) review of the existing KM tools and
feedback from users of these tools as described in Section 2.1 and 2) industrial
needs identified through various initiatives and projects as described in Section
2.2.

2.1 Existing Knowledge Engineering Tools

In ontology engineering, while many tools address specific phases, only a few pro-
vide comprehensive solutions. A recent EU Horizon2020 OntoCommons survey
[11] categorized tools, including competency questions for requirement specifi-
cation, Linked Open Vocabulary (LOV) and IndustryPortal for ontology reuse
and publication, Chowlk and Menthor editor for conceptual modelling, various



Title Suppressed Due to Excessive Length 3

reasoners, e.g., Pellet, Hermit, Fact++, and consistency checkers, e.g., OOPS!,
all of which has targeted focus in some of the activities along the ontology en-
gineering lifecycle. In contrast, a comprehensive KM tool facilitates many KM
activities, such as ontology implementation, covering drafting, source editing,
evaluation, ontology matching, maintenance, issue management, and usage as
well as managing large data volumes. Past surveys [3, 13, 8, 12, 9] on ontology
editing tools mention comprehensive tools such as SWOOP, Protégé, WebODE,
TopBraid Composer, OntoPic Fluent editor, OWLGrEd, OntoEdit, Anzo plat-
form, Cameo modeller, and PoolParty, which comply to the most popular and
de facto standards for knowledge engineering, such as OWL and RDF. It can
also be observed that ontology editing and knowledge graph management are
distinct activities, and the mentioned tools have varied support for both. Graph
database systems such as Neo4J, GraphDB, AllegroGraph, Stardog, and RDFox
often include dedicated data transformation tools along with a triplestore as
their main offering.

The primary aspects of evaluating these tools are their features and usabil-
ity; the former covers the functionalities, architecture, and support to various
activities of ontology engineering and the latter covers various types of user
experience. Past evaluations [11, 13, 9, 5] mention many common features that
ontology and knowledge graph editors typically support. These are expressivity,
language, modularisation and reusing, consistency check, reasoning and infer-
ence, merging, mapping, encoding and storage, visualisation, data transforma-
tion, query, and third-party support. As Islam and Sheikh [6] noted, there is
no standard approach to evaluate the usability of ontology editors. Still, some
of the usability criteria that can be found in the small number of past surveys
are user experience and visual abstraction, collaboration, multi-lingual support,
performance and scalability, methodological guidance, practicality, help and doc-
umentation, and exception handling. Easy access and deployment of the tool,
along with its openness and extensibility also play a big role in ensuring its us-
ability. The OntoCommons survey [11] collected 77 responses from the major
knowledge engineering tool developers using online questionnaires that include
a list of common requirements for knowledge engineering tools: collaboration
of multiple stakeholders, visualisation, debugging, validation, quality assurance
and analytics, API support, OWL support, ontology import, user-friendliness,
connected ontologies, tool integration, modularisation, search and reuse ontol-
ogy, ontology correlations, ontology deployment and document generation, and
ontology conceptualisation, understandability of GUI labels. Although the basic
features for a comprehensive ontology editor can be found by surveying the ex-
isting tools, the development of SLS prioritised those features that can fulfil the
requirements gathered from community surveys as mentioned above.

2.2 Industrial feedback

The introduction of a new process and working method requires the support of
new types of tools, as described in the OntoCommons roadmap [1]. The Knowl-
edge Translator report [4] emphasizes the need for easy on-boarding and training



4 C. Fauconnet et al.

for the transition from a human-centric paper standard to a data-centric and
model-centric approach, exemplified by initiatives such as CFIHOS 5, allowing
the analysis of digital requirements, source coherence and internal knowledge
sharing with external partners.

In 2020 and 2021, TotalEnergies collaborated with stakeholders of the In-
ternational Association of Oil & Gas Producers6 (IOGP) and the World Eco-
nomic Forum (WEF) to formalize the conditions for better data exchanges in
the world’s energy industries. It is evident in the industrial outlook that sharing
reliable information requires addressing the big data challenges (volume, value,
variety, velocity, and veracity) and a common way of structuring and exchanging
knowledge. The IOGP working group identified not only the fundamentals for
common semantics for data structuring and exchange but also a set of recom-
mendations for a suitable KM tool, including web (HTTP protocol) compliance,
following the motto: ‘Everything is available to everyone and everywhere at any
time’, open code practice, publishing vocabulary definitions with IRI, obligatory
common schema definition, compliance to RDF/OWL formalism, and interactive
functional web-applications for query/extraction of information. The industrial
stakeholders of the above-mentioned initiatives realised that existing tools for
supporting these semantic web requirements often have a high learning curve,
necessitating a new kind of tool for easy onboarding and upskilling. In the fol-
lowing sections, we describe how SLS addresses these requirements from the
perspective of its core architectures and various tools dedicated to critical KM
tasks.

3 Specification of SLS

Developed within the TSF project, SousLeSens7 (SLS) is a suite of web tools
designed to facilitate the creation of semantic knowledge graphs using ontolo-
gies. It functions as an adaptable set of tools and a cohesive suite that aims
to demystify the complexities associated with the Semantic Web. By offering
a user-friendly interface, SLS makes it possible for individuals, including those
in industrial sectors, who may not specialize in these technologies, to leverage
Semantic Web capabilities. This accessibility is crucial for meeting industrial
requirements, particularly in managing data and knowledge, developing digital
twins, and supporting decision-making processes.

3.1 Methodological foundations

The initial requirements for a knowledge graph management tool were chartered
by the TSF project in January 2021, as shown in Fig. 1. The SLS development
team facilitated the creation of initial prototypes that were periodically reviewed
to progressively develop the versatile TSF tool suite. Over time, the support for
5 https://www.jip36-cfihos.org/cfihos-standards/
6 https://www.iogp.org/
7 https://sls.kg-alliance.org/



Title Suppressed Due to Excessive Length 5

W3C-recommended formats in a cohesive data management framework provided
a flexible solution to TSF for predefined data interoperability in several use cases.
This allowed the immediate reuse of internal technical references, expressed in
SKOS, by converting them into RDF and OWL formats within TSF. The code
and interface integrated methodological governance, ensuring conformity to com-
mon structuring principles. This orchestration aligned company activities with
semantic knowledge graphs, serving as domain ontologies for reference data do-
mains.

Fig. 1. Timeline of SousLeSens evolution.

The SLS toolset (purposes of various tools under SLS are summarised in Fig.
2) is designed to facilitate the continuous onboarding and upskilling of internal
members of TotalEnergies by mirroring the exploration process of the semantic
web for newcomers. However, the responsive and interactive design principles of
SLS are poised to benefit all users in learning semantic web technologies, ad-
dressing common inquiries throughout the learning curve. For example: 1) Dis-
covering, Comparing, and Choosing Ontologies: SLS’s visualization and
manipulation of graphs under the tool Lineage simplifies understanding essential
ontology notions, allowing users to explore, mix, and compare different ontolo-
gies with visually driven capabilities. 2) Building Ontology: SLS provides a
user-friendly interface for creating classes, establishing semantic relationships,
and respecting constraints. The tool automates SPARQL queries within triple-
store databases based on the type of ontology being built. 3) Associating an
Ontology with Data: SLS aids in generating mappings between ontology ob-
jects and data model elements, especially for tabular data. The tool allows users
to express, save, and graphically represent mappings for validating their rele-
vance. 4) Building a Semantic Knowledge Graph (SKG): SLS transforms
data from relational databases or CSV files into a knowledge graph using pre-
established mappings. The tool is evolving to support the RML standard in its
roadmap. 5) Using SKG: SLS supports two distinct uses of semantic knowledge
graphs, enabling queries through APIs or exploration mode. In exploration mode,



6 C. Fauconnet et al.

users can interact with graphical representations, simplifying queries based on
ontology concepts. 6) Collaborative Work: SLS’s internet-native architecture
promotes collaborative work by providing secure user management, data source
control, and read-write rights. Metadata addition helps trace modifications and
qualify their status. 7) Combining Tools: SLS’s layered, modular architecture,
combined with technical standards, allows it to offer integrated services and act
as a client or third-party service provider, facilitating seamless combination with
other tools.

Fig. 2. Overview of SLS mapping different usage of its tools (Lineage, KGCreator and
KGQuery) along with the technical stack (at the bottom).

In this context, the technical architecture of SLS was designed based on
the following pillars: 1) Rigorous management of semantics included in upper-
level ontologies, encoding the constraints in reference languages, such as RDF,
RDFS, and OWL; 2) A graphical visual representation, utilizing nodes and edges
as a global metaphor for an RDF graph, captures the expressive richness of the
triples graph while ensuring understandability; filtering and navigation capabil-
ities within the network elements, coupled with the graph spatialization engine,
aid users in comprehending complexity, coherence, inconsistency, and multiple
relationships by accommodating the limitations of simultaneous information ap-
prehension by the human eye. 3) Alternative mode of interaction and manip-
ulation based on the generalization of a three-step process: translation of user
actions into SPARQL queries, execution of queries on a triplestore internal to
SLS or other in reading as well as in writing modes, and representation of query
results either in graph mode or in table mode.



Title Suppressed Due to Excessive Length 7

3.2 Software Architecture

The organic design of SLS evolved by gradually aggregating functionalities around
the central core concept of visualizing and manipulating graphs. Technical solu-
tions, implementing some original codebases, reflect this development. Notably,
the client bears the majority of processing, enabling rich interactions with the
graph without frequent server calls—a key for the performance of SLS. The
choice of untyped JavaScript, used on both the client and server sides (node.js)
was based on its agility in seamlessly moving code between them. TypeScript,
a typed form of JavaScript, was not used due to its heavy constraints on typ-
ing, which were deemed impractical for our frequently evolving code needs. The
architecture of SLS is centered on its NodeJs web server which essentially acts
as a flow distributor between its different peripheral components through secure
APIs, which gives it the character of an open technical platform as shown in Fig.
3.

Fig. 3. Technical architecture of SLS

In the following, various core components of SLS are described based on the
architecture.

1. Security and access management: Each user of the SLS web interface or
API is authenticated. Several authentication systems are supported but only
one is active within an instance. In addition, requests made to the internal
TripleStore or the search engine are filtered according to the user’s rights.

2. Administration and configuration module: As a collaborative appli-
cation, SLS rigorously manages the access of different users to different re-
sources and allows very flexible management of access to resources ranging



8 C. Fauconnet et al.

from public sources visible to all to private sources, having restricted write
rights for only a few users. For this purpose, SLS has developed an adminis-
trative management module composed of the objects: Users, having different
roles and permissions, Source, identifying different KGs, and Profiles, main-
taining access rights by mutual association.

3. Storage layer: The RDF graphs manipulated by SLS are stored either in
its internal triplestore (Virtuoso) or in other triple stores referenced and
accessible in SLS depending on the configuration.

4. Application server layer: This layer powered by Node.js communicates
via APIs in HTTP(S) mode with the user interface and with external clients
while respecting the access rules applicable to each client. Requesting APIs
triggers various calls, e.g., execution of queries on SPARQL or SQL servers,
specific internal commands, and access to third-party APIs (python, java,
etc.) depending on the case, always checked in terms of access rights.

5. The web client layer (browser) locally manages most of the actions car-
ried out by the user (business logic) and limits the interactions with the
server layer for reading data or specific processing. For example, the con-
struction of SPARQL or SQL queries in response to user actions is done
dynamically on the client side, unlike the practices of many other applica-
tions. SLS incorporates common UI components, such as the SourceSelector,
for user-authorized source selection, the jsTreeWidget, facilitating tree rep-
resentation and node control actions, and the NodeInfos dialogue, displaying
predicates of a node, including the ability to add or remove predicates based
on user rights and experimental visualization of axioms. These components
streamline various interactions within the interface across multiple contexts.

6. Visual representation of knowledge graphs stands out in SLS by prior-
itizing graph drawing and manipulation, a central feature that distinguishes
it from similar tools. It utilizes the vis.js8 JavaScript library, offering a ro-
bust API for graph visualization and interaction. Vis.js provides various
spatialization algorithms, optimizing graph representation based on factors
like the number of relationships each node has, with central nodes having
more connections. For example, the configuration for the BarnesHut layout
algorithm, which is a quadtree-based gravity model and the fastest non-
hierarchical solver. Graph stabilization is achieved through successive itera-
tions, which can be manually interrupted by users. Before graph drawing in
SLS, SPARQL queries select triples from the store, transformed into nodes
and edges using vis.js API. As RDF graphs in OWL ontologies or SKGs can
be intricate, different triplet filtering strategies, detailed in Section 3.3, are
implemented for clear and useful representations. Once represented on the
screen it is possible to interact via the mouse with the nodes and edges of
the graph in order either to obtain information to navigate in the graph or
to create new predicates.

7. Plugins: SLS has a system of plugins allowing users to create specific appli-
cations, including their web app, that can be used like other tools and take

8 https://github.com/visjs



Title Suppressed Due to Excessive Length 9

advantage of the entire environment. The open architecture of SLS supports
interaction with external libraries, such as JOWL9 —a Java web application
with REST APIs developed in 2023. This integration allows the execution
of OWLAPI and SWRL (reasoner and rules) Java methods within SLS. Ad-
ditionally, an integrated Python API enables users to choose import/export
formats for triplestores and, soon, to interact with SLS-referenced graphs
from a Jupyter or other Python environment while respecting user access
rights.

8. Deployment: SLS’s technical environment is deployed through diverse
Docker images, including a node.js web server with SLS code and APIs 10,
a Virtuoso triplestore, an ElasticSearch search engine, an SQL server (and
soon Postgres SQL) database, a Python environment, and optional third-
party components and specific SLS plugins.SLS can be downloaded freely
from its GitHub repository11 under an MIT license. SLS releases follow a
standard versioning system. Supporting the easy onboarding, a documenta-
tion website12 (currently containing ‘quick start’ and many video tutorials)
is also made available.

3.3 Tools in SLS

Lineage in SLS facilitates the simultaneous representation and manipulation
of graph representations of different ontologies. It enables the selection, editing,
evaluation, and comparison of ontologies, allowing users to generate overviews
or details for specific tasks. Key features include selecting source ontologies,
transforming triples into interactive graph drawings, random navigation on the
whiteboard, creation of classes and individuals, visualization of predicates and
axioms, drag-and-drop relationship creation, advanced SPARQL query genera-
tion, representation of label similarities, label-based graph searches, and object
properties selection and presentation. The UI components of Lineage displaying
an example ontology shown in Fig. 4. Lineage being a versatile ontology editor,
it supports constraints on class and properties in a variety of expressivity, from
simple subsumption and transitivity suitable of RDF graph to domain, range,
existential, and universal constraints to support full Description Logic (DL) for-
malism. The graph-drawing complexity is balanced by providing the option to
export information displayed in tabular form (CSV) for users accustomed to
spreadsheets and relational databases. As SLS is integrated into IndustryPortal
[2], users may search for a FAIR ontology from the portal for easy reuse.

KGCreator can be used to simplify the transform complex industrial data into
a semantic knowledge graph by serving as a user-friendly alternative to RML
or R2ML-based tools. Its straightforward structure, depicted in Fig. 5, proves
9 ttps://github.com/souslesens/jowl

10 https://sls.kg-alliance.org/api/v1/
11 https://github.com/souslesens/souslesensVocables
12 http://souslesens.org/index.php/tools/



10 C. Fauconnet et al.

Fig. 4. Lineage tool displaying an ontology with upper ontologies in its import and
various UI controls for users to manage, view and edit the ontology.

effective for even non-specialist operators. While KGCreator facilitates interop-
erability with standards by easily translating to RML, it offers features such
as access to tabular data schemas, graphical exhibition of the ontology for col-
umn/class associations, detailed mapping for enriched associations, visualization
of mappings’ completeness and consistency, and simulation of generated triplets
for previewing and corrections before storing in the triple store. Additionally,
KGCreator supports functions and transformations for data line processing and
table mapping, ensuring flexibility in adjusting data structures and avoiding er-
rors. Resource identifiers in KGCreator can take various forms, including real
URIs and blank nodes associated with random numbers. Triplet Generation En-
gine, a backend processing program, utilizes mappings and associated data to
generate the knowledge graph in the triple store, offering an API for regenerating
the entire sub-graph from previous mapping.

KGQuery allows the use of SKG in exploration mode without having to master
the SPARQL language and know the complex structure of the graph, the KG-
Query tool offers an interactive query-able abstraction of the KG, which allows
users to automatically generate queries by graphically selecting the classes, as
shown in Fig. 6. KGQuery is also able to apply filters and perform queries on mul-
tiple graphs. The visual manipulation of knowledge graphs through queries relies
on correct data typing and predicate construction in alignment with ontology
constraints during graph construction. The queryable abstraction of the KG is
derived from the actual classes and predicates present in the graph, maintaining
fidelity. The graph traversal algorithm, based on shortest path calculations us-
ing adjacency matrices, facilitates automatic SPARQL query construction, with
results presented in tabular form - following the usual expectations of data users
- along with group queries and set operations.



Title Suppressed Due to Excessive Length 11

Fig. 5. KGCreator interface to create and manage mapping from heterogeneous sources
(e.g., database, CSV) to ontology and generate triples using these mappings.

Fig. 6. Example of automatic SPARQL query generation using the graphical interface
of KGQuery.



12 C. Fauconnet et al.

4 Validation

In this section, we first provide three industrial use cases to demonstrate the
practical use of SLS in semantic modelling and exploitation of data. Furthermore,
we discussed the essential capabilities of SLS in comparison to other tools against
the scope, coverage, and requirements identified in Section 2.

4.1 Case Studies

As a fundamental tool, SLS supports many data activities in TSF. The following
sections present three use cases where SLS plays major roles in standardising
industrial data for cross-organisation exchange, supporting business decisions,
and valorising geoscience data by integrating AI tools for oil discovery.

Lineage for Reusing Semantic Standards for Industrial Data OntoCom-
mons Roadmap [1] identifies industrial needs for enhanced data standards, such
as logic-based formats, integration of cross-cutting standards, and multi-domain
stakeholder involvement. The development of the CFIHOS RDL13 prototype
during the READI JIP14 in Norway (2018-2022), aligned with the Industrial
Domain Ontology15 (IDO) structure, exemplifies progress in this area, fostering
major industry adoption under ISO standardization. The lack of interoperability
among standardized ontologies and the demand for clear presentations of CFI-
HOS RDL values emphasize the importance of semantization, providing benefits
like easier accessibility and flexibility for extensions. Lineage proves valuable in
facilitating collaboration in ontology setup and validation phases through its fil-
tering capabilities and visual representations, aiding in the detection of defaults.
TotalEnergies leverages Lineage for digital technical data interoperability and
NLP processing for noise reduction and enhancing machine learning confidence
in used labels, based on application ontologies in the Geosciences and Reservoir
Well domain, which are built following ISO 23726 standard family for ontology
and ISO/IEC 81346 standard for managing digital data. Lineage’s key appli-
cations include versatile source comparisons, collaborative work on a writable
semantic layer, ensuring coherence in the domain knowledge graph, developing
a collaborative CFIHOS vocabulary in IDO through SLS, and facilitating easy
integration of business applications with reference domain ontologies across the
organization.

KGCreator and KGquery for Business Decision Support KGCreator
and KGQuery play a pivotal role in TotalEnergies’ business decision support,
particularly in addressing challenges during major installation shutdowns, as
showcased in the Dalia asset’s life cycle extension project. In this project, SLS,
13 https://www.jip36-cfihos.org/cfihos-standards/
14 https://readi-jip.org/
15 https://www.iso.org/standard/87560.html



Title Suppressed Due to Excessive Length 13

equipped with KGCreator and KGQuery, optimized planning sequences by con-
sidering criteria from various Information Systems like SAP, Document Manage-
ment System, and Primavera planning tool. The digital approach transformed
the project by facilitating real-time insights across disciplines and systems, with
a key strength in linking each Work Breakdown Structure item with pertinent
data sources for efficient categorization and filtering. The application of KGCre-
ator and KGQuery within SLS resulted in streamlined decision making, efficient
change management, simplified project reviews, automated compliance checks,
and impact analysis, bringing tangible benefits such as reduced standby risks,
improved operational efficiency, comprehensive documentation, and continuity
preservation.

SLS for AI-powered Oil Discovery and Ocean Exploration TotalEn-
ergies’ pilot study integrates SLS and advanced AI tools like NLP, GPT, and
LLM with the well domain ontology (see Section 4.1) to revolutionize oil dis-
covery and ocean exploration. NLP addresses challenges in managing complex
informational portfolios, while GPT enriches the knowledge graph with addi-
tional facts. The experiment focuses on SLS for metadata management, entity
reconciliation, and acculturation support to enhance data value and mitigate
challenges in processing data labels and business objects across contexts. The
proposed demonstrator, leveraging diverse databases while preserving semantics,
aims to rationalize source databases, enhance data usage, and virtualise data
access. For generative AI projects, SLS provides a reference vocabulary-based
semantic guidance and automated verification by reasoning as an essential ser-
vice to address interoperability challenges and inaccurate data. An SLS python
API facilitates easy access to SLS RDF graphs and third-party AI tool libraries
in the Jupiter python environment. In conclusion, the modular elements of SLS
offer a comprehensive approach to combine generative AI and ontologies for data
and industrial engineering document valorisation. The proposed benchmarking
initiative will emphasize knowledge graphs’ role in enhancing LLMs’ accuracy
for question answering on enterprise SQL databases, as posited by Sequeda et
al. [10].

5 Comparative Analysis

SLS aims to be one of the most widely used modern ontology editors that sup-
ports OWL and RDF. It therefore includes tools that span various stages of
ontology engineering, notably Lineage for ontology implementation and KGCre-
ator and KGQuery for ontology maintenance and use. This combination of fea-
tures within a single ecosystem is uncommon among other tool systems, with the
exception of TopBraid and PoolParty. Notably, Protégé, in its standard offering,
does not include knowledge graph management. Various features of Lineage,
such as the visual whiteboard for conceptual to formal drafting of ontology,
mapping, matching and comparison facility for handling ontology import stack



14 C. Fauconnet et al.

in a modular fashion, along with in-place guidance to help users build coher-
ent ontologies typical to the other ontology editors, SLS stands out from other
editors, e.g., Protege, TopBraid Composer, WebODE, SWOOP, OntoPic and
Fluent with its unique feature of purely visual, no to minimal code environment
for ontology editing - although many of them provide ad hoc graph visualisa-
tion. This purely visual design becomes a more distinguishable feature of SLS
in terms of KGCreator and KGQuery, considering no comprehensive knowledge
management system contains such a novel interface. Collaboration is a primary
feature of SLS and covers every knowledge engineering activity under its sup-
port. Although collaboration is also provided by some of the other editors, e.g.,
WebProtege, TopBraid, Anzo, SWOOP, and OntoEdit, the user experience for
these editors will be vastly different in comparison to SLS’s multi-user simul-
taneous manipulation of visual knowledge graphs. Lastly, in past and ongoing
projects, SLS’s visual abstraction of many complexities of end-to-end knowl-
edge engineering has proven to be particularly suitable for industrial users in
co-modelling, co-creating and co-analysing vast amounts of data for common
understanding, system-wide integration and exchange, supporting practical ben-
efits in decision support driven by SLS’s easy integration with other AI-based
tools.

In Table 1, we provided a comparative analysis of the SLS against the re-
quirements identified in Section 2, considering only the default configuration,
i.e., without any plug-in for every product. As described in Section 2, the re-
quirements are derived from two sources: 1) user surveys on existing tools, and
2) industrial feedback. The tools presented in Table 1 include many other fea-
tures, which are sometimes unique to them. These features are not included for
them not being part of baseline requirements. Therefore, the comparison matrix
in Table 1 is not an evaluation of the overall efficacy of the tools, as each one
of them is built with its purpose and serves its users with some unique features.
Moreover, the comparison is conducted by the authors conjointly with some in-
dustrial stakeholders and users, which lacks the critical mass of a typical survey.
We want to conduct a wide survey to compare several existing tools against SLS
in the future.

SLS being more focused on ease of use for industrial operators, it does not
yet provide some of the more rigorous language supports that are available in
other tools. e.g., Protégé. These languages and grammars, including Manchester
Syntax Format for writing complex axioms, SWRL, DataLog, or SPIN rules for
rule-based inference, and SHACL for data validation. The mappings created by
KGCreator is also not exchangeable in standardised formats such as RML and
SSSOM. We plan to include these features in the future versions of SLS.

6 Conclusion

This paper introduced SousLeSens (SLS) as a solution that addresses practi-
cal industrial needs and facilitates easy onboarding of industries into semantic
web technologies, especially at a time when traditional data technologies are



Title Suppressed Due to Excessive Length 15

Table 1. Comparison of tools. Columns: A – coverage of KM activities (e – editing
ontology, r – reasoning KG, v – visualizing KG, p – population of data in KG, q –
query, u – use), B - modularisation/import resolution, C – search and reuse ontology,
D – Consistency check, E – reasoning/inference, F – rules, G – mapping, H – model
repository, I – conceptualisation, J – data transformation, K – visual query, L – collab-
oration, M – methodological guide, N – User-friendliness (no-code environment, ease
of learning, third-party integration)

Tools A B C D E F G H I J K L M N
Protégé e,r,v Y N Y Y Y N N N N N N Y N

WebProtege e,r,v Y N Y N Y N Y N N N Y Y N
OntoPic p,q,v N N N N N Y N N Y N Y N Y
TopBraid e,r,v,p,q Y Y Y Y Y Y N N Y N Y N N
Fluent e,r,v Y N Y Y Y Y N N N N N Y N

OWLGrEd e,v Y Y N N N N Y Y N N N N N
OntoEdit e,r Y Y Y Y N N N N N N N N N

Anzo p,q,v,u Y Y Y N N Y Y N Y N Y N Y
PoolParty e,v,p,u Y Y N Y N Y Y Y Y N Y N Y

SLS e,r,v,p,q,u Y Y Y Y Y Y Y Y Y Y Y Y Y

no longer sufficient to manage present and future data challenges. SLS, born
out of industry necessity, now aspires to foster broad adoption of semantic KM
practices. The future work will focus on key areas for improvement and expan-
sion, including collaboration support, enhanced graphic axiom creation tools,
specific ontology creation tools, reasoner capabilities for KGcreator mappings
validation, refining the virtual SQL query system in KGquery, and reshaping
the user interface for better ergonomics and a responsive design. Looking ahead,
SLS envisions growing its user community to drive its development roadmap,
along with fostering collaboration between academic and industrial perspectives
through its open-source initiatives. The establishment of a dedicated working
group within the Knowledge Graph Alliance16 (KGA) will play a pivotal role in
achieving these goals and ensuring the continuous evolution of SLS to meet the
evolving needs of its user base.

Acknowledgments. This work was funded by the EU H2020 Ontology-driven Data
Documentation for Industry Commons (OntoCommons17) under grant agreement no.
958371 and was supported by TotalEnergies and SousLeSens. We would like to thank
Karim Ounnoughi from Akkodis Group, Xavier Garnier and Nicolas Chauvat, from
Logilab, Amine Karoui from UTTOP, and Pierre Jallais from TotalEnergies for their
valuable technical contributions to this work.

16 https://www.kg-alliance.org/
17 https://ontocommons.eu



16 C. Fauconnet et al.

References

1. Adamovic, N., Janotka, E.D., Karray, H., Sarkar, A., Kiritsis, D.,
Goldbeck, G., Magas, M., Breslin, J., Yang, L., Fensel, A., Simsek,
U., Muscella, S., Mancarella, C., Piroi, F., Ghedini, E.: Ontocom-
mons roadmap v1 (Jan 2023). https://doi.org/10.5281/zenodo.7544509,
https://doi.org/10.5281/zenodo.7544509

2. Amdouni, E., Sarkar, A., Jonquet, C., Karray, M.H.: IndustryPortal: a common
repository for FAIR ontologies in industry 4.0. In: The 22nd International Semantic
Web Conference. Athens, Greece (2023)

3. Buraga, S.C., Cojocaru, L., Nichifor, O.C.: Survey on Web Ontology Editing Tools.
Transactions on Automatic Control and Computer Science NN(ZZ), 1–6 (2006)

4. Goldbeck, G., Simperler, A., Adamovic, N., Björling, S.E., Cantrill,
V., Chiacchiera, S., Exner, T., Furxhi, I., Gao, D., Karray, M., Kir-
itsis, D., Lomax, J., Lynch, I., Matentzoglu, N., Noeske, M., Piroi,
F., Poveda-Villalón, M., Sarkar, A., Vladislavleva, K.: The Translator
in Knowledge Management for Innovation – A Semantic Vocation of
Value to Industry (Oct 2023). https://doi.org/10.5281/zenodo.10057816,
https://doi.org/10.5281/zenodo.10057816

5. Gyrard, A., Datta, S.K., Bonnet, C.: A survey and analysis of ontology-based
software tools for semantic interoperability in IoT and WoT landscapes. IEEE
World Forum on Internet of Things, WF-IoT 2018 - Proceedings 2018-Janua,
86–91 (2018). https://doi.org/10.1109/WF-IoT.2018.8355091

6. Islam, N., Sheikh, G.S.: A Review of Techniques for Ontology Editor Evaluation.
Journal of Information Communication Technology 9(2), 104–114 (2015)

7. Leclerc, J.C., Tetard, G., Keraron, Y., Fauconnet, C.: Use of Ontologies to Struc-
ture and Manage Digital Technical Data of Industrial Assets: First Steps Towards
an Ecology of Knowledge in Multi-Energies Industry. In: CEUR Workshop Pro-
ceedings. vol. 3240 (2022)

8. Rahamatullah Khondoker, M., Mueller, P.: Comparing ontology development tools
based on an online survey. WCE 2010 - World Congress on Engineering 2010 1,
188–192 (2010)

9. Rastogi, N., Verma, P., Kumar, P.: Analyzing Ontology Editing Tools for Effec-
tive Semantic Information Retrieval. International Journal of Engineering Sciences
Research Technology 6(5), 40–47 (2017), http://www.ijesrt.com

10. Sequeda, J., Allemang, D.T., Jacob, B.: A Benchmark to Understand the
Role of Knowledge Graphs on Large Language Model’s Accuracy for Ques-
tion Answering on Enterprise SQL Databases. ArXiv abs/2311.0 (2023),
https://api.semanticscholar.org/CorpusID:265150432

11. Skjæveland, M.G., Slaughter, L.A., Kindermann, C.: OntoCom-
mons D4.3 - Report on Landscape Analysis of Ontology Engi-
neering Tools (Apr 2022). https://doi.org/10.5281/zenodo.6504670,
https://doi.org/10.5281/zenodo.6504670

12. Slimani, T.: Ontology Development: A Comparing Study on Tools, Languages
and Formalisms. Indian Journal of Science and Technology 8(24) (2015).
https://doi.org/10.17485/ijst/2015/v8i1/54249

13. Youn, S., Arora, A.: Survey about Ontology Development Tools for
Ontology-based Knowledge Management. University of . . . pp. 1–26 (2009),
http://suanpalm3.kmutnb.ac.th/teacher/FileDL/supot22255310501.pdf


