
SCOOP all the Constraints’ Flavours
for your Knowledge Graph

Xuemin Duan1[0000−0002−3256−8341], David
Chaves-Fraga2,1[0000−0003−3236−2789], Olivier Derom1, and Anastasia

Dimou1[0000−0003−2138−7972]

1 KU Leuven – Flanders Make@KULeuven – Leuven.AI, Belgium
{xuemin.duan,anastasia.dimou}@kuleuven.be & olivierderom@gmail.com

2 Grupo de Sistemas Intelixentes, Universidade de Santiago de Compostela, Spain
david.chaves@usc.es

Abstract. Creating SHACL shapes for the validation of RDF graphs
is a non-trivial endeavor. Automated shape extraction systems typically
derive SHACL shapes from RDF graphs, and thus, their effectiveness
is inherently influenced by the size and complexity of the RDF graph.
However, these systems often overlook the constraints imposed by indi-
vidual artifacts, although RDF graphs are often constructed by apply-
ing ontology terms to heterogeneous data. Only a few systems extract
SHACL shapes from either the data schema or the ontology, leading, in
either case, to limited or incomplete constraints. We propose SCOOP,
a framework that exploits all artifacts associated with the construction
of an RDF graph, i.e. data schemas, ontologies, and mapping rules, and
integrates the SHACL shapes extracted from each artifact into a uni-
fied shapes graph. We applied our approach to real-world use cases and
experimental results showed that SCOOP outperforms systems that ex-
tract SHACL shapes from RDF graphs, generating more than double
the types of constraints than those systems, and effectively identifying
missing and erroneous RDF triples during the validation process.
Resource type: Software Framework — License: Apache-2.0
DOI: https://doi.org/10.5281/zenodo.10280346
URL: https://github.com/dtai-kg/SCOOP

Keywords: SHACL · Shape integration · Knowledge graph validation.

1 Introduction

Creating SHACL shapes for the validation of RDF graphs is a non-trivial en-
deavor. Shapes Constraint Language (SHACL) [28], the W3C recommendation
for validating RDF graphs, has gained increasing popularity, which has further
prompted a growing number of endeavors in automating shape extraction. How-
ever, a notable proportion of users in industry and academia still favor creating
shapes manually [14,33], indicating the practical limitations of existing works.

Currently, automated shape extraction broadly falls into two categories:
RDF-based and non-RDF-based systems. The cost and performance of systems

https://doi.org/10.5281/zenodo.10280346
https://github.com/dtai-kg/SCOOP

2 Duan et al.

extracting shapes from RDF graphs [17,18,19,29,34,39] are inherently contingent
upon the scale and intricacy of the RDF graph, frequently leading to a limited
subset of constraints [32], e.g., not covering value range (e.g., sh:minExclusive) or
string-based constraints (e.g., sh:minLength). Besides, these systems also over-
look the constraints imposed by an RDF graph’s individual artifacts.

Non-RDF systems can be further delineated into extraction systems mining
shapes from either ontologies, mappings, or raw data schemas, i.e. the artifacts
from which RDF graphs are constructed. However, extracting shapes only from
ontologies [5,24] often results in redundant shapes, as the shapes frequently
encompass a broader spectrum of classes and properties than those in the target
RDF graph. Extracting shapes from raw data schemas, e.g., SQL schema [40],
XML Schema Definitions (XSD) [13,22] or JSON Schema [7], always results in
the misalignment between the extracted shapes and the classes and properties
within the target RDF graph [13]. Extracting shapes from mappings [10] covers
only a limited set of constraints [10]. This singular input source often results
in limited or incomplete constraints. To date, no research has been undertaken
to integrate shapes from multiple relevant sources into a unified shapes graph,
alleviating the drawbacks of individual systems and bolstering overall robustness.

We present SCOOP, a framework that exploits all artifacts associated with
the construction of an RDF graph: data SChemas, OntOlogies, and maPpings.
SCOOP integrates the SHACL shapes extracted from each artifact into a uni-
fied shapes graph. To achieve this, SCOOP comprises three modules: (i) post-
adjustment to align schema-driven shapes with the target RDF graph; (ii) equiv-
alences identification to align shapes from diverse sources, and (iii) integration
and inconsistencies resolution to prevent unsatisfiable shapes. We implement
SCOOP as an open-source system1 which incorporates RML2SHACL [9,10],
Astrea [4,6], and XSD2SHACL [12,13] to integrate shapes from mappings in
RML [11,26], ontologies in OWL [2], and raw data schemas in XSD [16].

We compare SCOOP with state-of-the-art systems in a real-world use case.
The performance experiments show that SCOOP has a significantly lower max-
imum memory usage compared to the RDF-based system. Addtionally, its run-
ning time is independent of the data size and faster than the RDF-based system
when the RDF graph exceeds 3.30 GB in size. The coverage experiments reveal
that SCOOP excels in generating accurate shapes to target classes and prop-
erties, outperforming state-of-the-art systems, and generates more than twice
the types of constraints compared to RDF-based systems. SCOOP is an exten-
sible framework that can seamlessly integrate more sources as additional shape
extraction systems emerge, e.g., other raw data schemas or mapping languages.

The remaining paper is organized as follows: Section 2 describes related works
and preliminaries; Section 3 discusses the challenges during shape integration;
Section 4 describes our methodology and implementation to address these chal-
lenges. Section 5 provides the evaluation of SCOOP in real-world use cases.
Section 6 concludes this paper and outlines possible future directions.

1 https://github.com/dtai-kg/SCOOP

https://github.com/dtai-kg/SCOOP

SCOOP all the Constraints’ Flavours for your Knowledge Graph 3

2 Preliminaries and Related Work

In this section, we introduce RDF validation (SHACL) and RDF construction
(RML), and then outline related work regarding shape extraction.

2.1 Preliminaries

This subsection summarizes the concepts required to understand the paper.
KG Validation with SHACL. To validate nodes in the RDF graph, the

Shapes Constraint Language (SHACL) was recommended by W3C [28]. The
shapes graph refers to a collection of shapes containing constraints expressed in
RDF format, while the data graph pertains to the target RDF graph undergoing
validation. A node shape typically specifies constraints on the focus node, where
the focus node represents the node in the RDF graph being validated (e.g., all
instances of :Student, Fig. 2). The focus node can be directly designated by
target declaration (e.g., :NS sh:targetClass :Student), indirectly specified through
reference relationships (e.g., :NS sh:node :NS2), or explicitly fed to the SHACL
processor with nodes to be validated. In cases where RDF graphs are to be val-
idated automatically without explicit extra specification, shapes lacking target
declarations become invalid as they do not trigger validation. A property shape
primarily serves to define the property value reached from the focus node through
a property path (e.g., :PS sh:path :grade). Therefore, reference relationships be-
tween shapes (e.g., :NS sh:property :PS) are crucial, as they delineate how the
SHACL processor traverses from the focus node to the property value.

KG Construction with RML. To map heterogeneous data to RDF graphs,
the RDF Mapping language was proposed in [11,26] generalizing R2RML [8],
the W3C recommendation to construct RDF graphs from relational databases.
The triples map describes how to map a data source, comprised by a logical
source, a subject map, and multiple predicate-object maps. The logical source
defines information about the mapped data source, including data location (e.g.,
“student.xml” in Fig. 2), reference formulation (e.g., ql:XPath in Fig. 2), and an
optional iterator (e.g., “/student” in Fig. 2). The subject map defines how the
subjects of triples are generated (e.g., “http://example.com/{@id}” in Fig. 2), and
the predicate-object map defines how the corresponding predicate (e.g., :grade
in Fig. 2) and object (e.g., “/grade” in Fig. 2) are generated. The reference is
used to directly specify the original data source, while the template is used to
build strings with the data source, which can be a single-component template
or a multi-component template (e.g., “http://example.com/{@id} {grade}”).

2.2 Related Work

Prior research on SHACL shape extraction primarily focuses on deriving shapes
graphs from RDF graphs; but also ontologies, raw data schemas, and mapping
rules. However, no system integrates multiple shapes into a unified shape.

RDF graphs-driven. Numerous efforts were proposed to extract shapes
and constraints from RDF graphs but the computational burden is contingent

4 Duan et al.

upon the scale of the RDF graphs and the covered constraints are limited [32].
QSE [34] mines shapes from large RDF graphs and avoids spurious shapes by cal-
culating the support and confidence scores of extracted shapes; SHACTOR [35]
provides a graphical user interface based on QSE. SHACLGEN [1] implements
a query-based system, which loads the whole RDF graph in memory restrict-
ing its capacity to handle large RDF graphs. SheXer [18,19] mines and filters
feature for constraints according to the frequency of occurrence, but the imple-
mentation lacks support for N-Quads. ABSTAT [39] employs a summarization
model to mine shapes by summarizing triple patterns extracted from the se-
mantic profile of RDF graphs. ShapeInduction [29] proposes an RDF graph
profiling approach using machine learning techniques by transforming the re-
gression problem into a classification problem. SHACLearner [23] utilizes the
inverse open path (IOP) to infer potential constraints in shape fragments for a
given target. Last, ShapeDesigner [3] extracts shapes using a query language.

Ontology-driven. Deriving SHACL shapes from ontologies is independent
of data scale, yet limited to constraints exclusively defined by the ontology, and
frequently derives redundant shapes as the RDF graph may only involve a subset
of the ontology. Astrea [6] derives SHACL shapes from ontologies by executing
a set of pre-defined SPARQL queries to retrieve ontology elements and derive
corresponding shapes and constraints. SHACLGEN also supports extracting
shapes from ontologies and Harshvardhan et al. [24,30] reuse the Ontology
Design Pattern (ODP) axioms to extract equivalent SHACL shapes.

Schema-driven. Extracting SHACL shapes from raw data schemas elimi-
nates the dependencies on the RDF graph scale, akin to ontology-driven systems.
However, the extracted shapes resort to a default namespace, causing a misalign-
ment with their targeted RDF graphs. For XML, XSD2SHACL [13] mines
SHACL shapes based on a set of correspondences between XSD and SHACL,
while XMLSchema2ShEx [22] mines ShEx shapes, but partially covers XSD.

Mapping-driven. Deriving shapes from mapping rules [10] captures the
implied constraints within the mapping rules, but it is limited to the constraints
that can be described by the mapping language. RML2SHACL [10] is the only
system that derives SHACL shapes from RML mapping rules [11] based on a
set of proposed correspondences. Its coverage is limited to constraints of a more
basic nature, as RML does not offer the same scope of support for rich constraints
found in SHACL, such as value range constraints (e.g., sh:minExclusive).

As opposed to the aforementioned, SCOOP integrates SHACL shapes ex-
tracted from the raw data schema, the ontology, and the mapping rules, taking
advantage of all aspects that contributed to the construction of an RDF graph.

3 Shape Integration Challenges

Integrating SHACL shapes from mapping rules, ontologies, and raw data schemas
is not straightforward, as challenges may arise during the integration process.

(C1) Misalignments. Misalignment arises inevitably during the integra-
tion of shapes extracted from raw data schemas and those extracted from ontol-
ogy or mappings. The shapes derived from mappings and ontologies are swiftly

SCOOP all the Constraints’ Flavours for your Knowledge Graph 5

applicable for validation purposes, as they inherently align with the defined
classes and properties within the RDF graph (e.g., sh:targetClass of stu:Student).

However, the shapes from raw data schemas cannot be directly aligned with
the SHACL shapes extracted from the mappings and ontologies. Due to the
absence of classes and properties information specific to the target RDF graphs,
the extracted shapes resort to default namespaces pre-defined by the extraction
systems. As shown in Fig. 2, the XSD-driven shapes opt for ex:student as target
class (instead of stu:Student as in the target RDF graph). Moreover, constraints
extracted from the raw data schema may be superseded or become invalid during
the RDF construction. For instance, the id originally defined as a string in XSD-
driven shapes may be used to create an IRI according to the mappings.

(C2) Inequivalences. The basis of the shape integration lies in the consol-
idation of constraints encapsulated within equivalent shapes, i.e. shapes validat-
ing the same node, which cannot be solely ascertained through uniform target
declarations or property paths due to the flexibility of SHACL syntax. For in-
stance, a node shape specified with sh:targetClass :Student is deemed equivalent
to a shape that defines the same target declaration. However, it may also be
considered equivalent to another node shape referenced by a shape sharing the
same target declaration (e.g., sh:targetClass :Student) through sh:node, even if
the latter node shape lacks the same target declaration.

(C3) Inconsistencies. Integrating shapes from different sources may lead
to constraint inconsistencies, potentially rendering the unsatisfiable shape, i.e.,
a shape that can never be conformed. Two distinct types of inconsistencies are
identified: one type adheres to SHACL syntax without violation, while the other
type poses a risk to the well-formedness of the resulting shape. As an illustrative
scenario, consider the construction of an RDF graph from two distinct raw data
sources, each is adhering to dissimilar grading systems. One source specifies a
passing grade range spanning from 8 to 20 points and the student id should
be IRI, while the other designates that from 60 to 100 and the id should be
a string. Direct integration of constraints of sh:nodeKind sh:IRI and sh:datatype
:string will lead to inconsistency, i.e. it does not violate syntax but will cause the
shape to never be satisfied. The simultaneous presence of two distinct passing
grade constraints sh:minInclusive and two sh:maxInclusive can be categorized as
an inconsistency, which arises from the restriction that a shape incorporates at
most one sh:minInclusive constraint and one sh:maxInclusive constraint.

4 SCOOP

We propose SCOOP, an open-source framework1 designed to integrate existing
shape extraction systems targeting diverse sources into a unified and compre-
hensive shapes graph. The current version of SCOOP supports SHACL core [28].

The integration workflow (Fig. 1) can be delineated into three principal mod-
ules: (1) post-adjustment of shapes extracted from raw data schema to ensure
alignment with the target RDF graph (Fig. 1– 1), overcoming (C1); (2) equiv-
alences identification among extracted shapes from diverse sources to identify

6 Duan et al.

Ontology

XSD XSD2SHACL Translated
Shapes

Post-
Adjustment

RML

OWL2SHACL Translated
Shapes

Adjusted
Shapes

Translated
Shapes

Unified
Shapes Graph

Equivalences
IdentificationRML2SHACL

Integration &
Inconsistencies

Resolution

1

2 3

Fig. 1: The workflow of SCOOP.

equivalent shapes (Fig. 1– 2), overcoming (C2); (3) integration and incon-
sistencies resolution for identifying inconsistent constraints within equivalent
shapes (Fig. 1– 3) to make integration decisions based-on three configurations,
SCOOP-All, SCOOP-Prior, and SCOOP-Prior-R, overcoming (C3). The mod-
ules are explained in detail in Subsection 4.1, 4.2, and 4.3 respectively.

4.1 Post-Adjustment

We mitigate the misalignment between preliminary shapes extracted from raw
data schemas and target RDF graphs by leveraging the RML mappings during
post-adjustment. Given that the most mature systems to extract shapes from
the raw data schema are focused on XML, we demonstrate our methodology for
XML Schema but the same should hold for other schemas as well.

The post-adjustment (Fig. 2) is structured into three steps: (a) SHACL
parsing to compute the implicit XPath within each shape (e.g., /student/grade)

(Fig. 2– A); (b) RML parsing to extract the XPath alongside the correspond-
ing classes and properties (e.g., the property stu:grade is related to objects con-
structed with the values of the elements matching the /student/grade XPath

expression) (Fig. 2– B); (c) shape adjustment based on the outcomes of the

parsing process (e.g., adjust ex:grade to stu:grade) (Fig. 2– C).
SHACL Parsing. We compute the XPath for each XSD-driven shape

based on shape identifiers and the referencing relationships among shapes by
utilizing a depth-first search (DFS) algorithm. The identifier for shapes (e.g.,
http://example.com/PropertyShape/studentType/grade) generated by XSD2SHACL
is the concatenation of the names of element declarations (e.g., grade), attribute
declarations (e.g., id), and global complex type definitions (e.g., studentType)
within the XSD. It encapsulates the path from the global declaration or definition
(e.g., studentType) to the corresponding XSD component (e.g., grade). Neverthe-
less, the identifier cannot be swiftly extracted as an XPath due to the potential
truncation of the XPath (e.g., /student/studentType and /studentType/grade) in
the identifier. Thus, the entire shapes graph needs to be traversed to compute
the complete XPath (e.g., student/grade).

We convert the shapes into a reversed directional acyclic graph of identifiers
and employ a DFS algorithm to traverse it, then compute the complete XPath for
each shape by considering all relevant shapes. We initiate the process by reversing
the relationships of identifiers referenced through sh:property and sh:node to con-
struct a graph. Shapes that reference other shapes but are not referenced by any

SCOOP all the Constraints’ Flavours for your Knowledge Graph 7

xsd:element student studentType

studentType

xsd:element grade

xsd:attribute id

student
student

sh:node studentType
student

studentType

sh:property studentType grade
@id

studentType grade
grade

grade

studentType @id
id

id

student id
grade grade
student

student
student

studentType
student studentType

studentType grade
student grade

studentType @id
student @id

student.xml student
@id

stu:Student
stu:grade grade

stu:Student
student id

stu:grade
student grade

student
student

sh:node studentType
stu:Student

studentType

sh:property studentType grade

studentType grade
grade

stu:grade

SHACL Parsing

RML Parsing

Adjustment

A

B

CXSD2SHACL

Fig. 2: An example of post-adjustment. RML in YARRRML serialisation.

shape are transformed into leaf nodes (e.g., http://example.com/NodeShape/student).
Then we traverse the graph using DFS to calculate the paths leading to all
potential leaf nodes commencing from each node. We can distinguish the seg-
ments within identifiers that are not elements or attributes names (e.g., student-
Type), as complex type definitions do not require the target declarations cre-
ation in XSD2SHACL (e.g., http://example.com/NodeShape/student/studentType).
Ultimately, we obtain an XPath for each shape by concatenating the path frag-
ments found within each path list (e.g., /student and /grade), while eliminating
any fragments corresponding to complex type definitions (e.g., studentType). An
example outcome of SHACL parsing can be found in Fig. 2.

RML Parsing.We parse the RML mappings to extract the XPath (e.g., stu-
dent/grade) corresponding to the associated classes or properties (e.g., stu:grade)
as Fig. 2 shows. For each triples map (e.g., :StudentMapping), we identify all rel-
evant classes (e.g., stu:Student) and associate them with the XPath extracted
from a template (e.g., id from http://example.com/@id) or reference in the sub-
ject map and concatenate it with the iterator (e.g., /student). Similarly, for each
predicate-object map, we correlate the property (e.g., stu:grade) defined by the
predicate map with the XPath (e.g., /student/grade) extracted also from the
object map, as described previously. Simultaneously, in cases of multiple compo-
nents templates (e.g., http://example.com/{@id} {name}) where multiple XPaths
are implicated and multiple shapes are involved, we manage them as a list (e.g.,
[/student/@id, /student/name]) for future adjustment.

Adjustment. We adjust the classes, properties, and constraints within the
preliminary shapes to align with the target RDF graph based on parsing out-
comes from both RML and SHACL, and showcase the example in Fig. 2. For
each class and property (e.g., stu:grade) associated with the XPath (e.g., /stu-
dent/grade) within the RML parsing results, we look for the corresponding shape
identifier (e.g., http://example.com/PropertyShape/studentType/grade) that shares

8 Duan et al.

Table 1: Focus node and property value extraction for equivalences identification.
Extraction Resultant mapping

?S a sh:NodeShape .
focusNode[S]=node?S sh:targetClass | sh:targetNode |

sh:targetSubjectsOf | sh:targetObjectsOf ?node.
?S sh:node* ?S2. focusNode[S2]+=focusNode[S]
?S a sh:PropertyShape .

propertyValue[S]=(?fn,?node)
?S sh:targetClass | sh:targetNode |
sh:targetSubjectsOf | sh:targetObjectsOf ?fn.
?S sh:path ?node.
if focusNode[S]:

propertyValue[PS]=(focusNode[S],?node)
?S sh:property ?PS. ?PS sh:path ?node.

the same XPath in the SHACL parsing results. If found, we update the tar-
get declaration (i.e. sh:targetClass) or property path (i.e. sh:path) with the class
or property (e.g., stu:grade) defined in RML. Ultimately, we eliminate shapes
that remain unadjusted and are not referenced by the adjusted shapes.

In addition to aligning classes and properties, we specifically create a new
shape for templates with multiple references to the raw data schema (e.g.,
http://example.com/{id} {name}). As that template involves multiple shapes de-
rived from the raw data schema, one for each XPath expression in the template,
the constraints originally present in individual shapes may no longer be valid. For
instance if, on the one hand, we have string-based constraints (e.g., sh:pattern)
and, on the other hand, the sh:datatype is an integer, not both constraints may
be retained. After parsing the RML mappings, the XPath list is retrieved.

Moreover, in the presence of cardinality constraints (e.g., sh:minCount 2 and
sh:minCount 3) across all pertinent shapes, these constraints are multiplied to cal-
culate the cardinality constraint (e.g., sh:minCount 6) for the merged shape. Sim-
ilarly, if length constraints are present in all relevant shapes (e.g., sh:minLength
3 for id and sh:minLength 1 for name in the template above), the cumulative
sum (e.g., sh:minLength 24), considering the length of the string outside the
component in the template (e.g., length of 20 for http://example.com/), is added.

4.2 Equivalences Identification

To determine the constraints within shapes that should be integrated, we identify
the equivalent shapes, i.e. the shapes designated for validating either the same
focus node or the identical property value reached via the same focus node.

We traverse the shapes from diverse sources that are intended for integration,
sequentially evaluating the following four scenarios, as delineated in Table 1, to
ascertain equivalency: (i) the present focus nodes of the node shape that de-
fines the target declaration; (ii) the cumulative focus nodes of shapes referenced
through sh:node by other shapes that possess focus nodes; (iii) the directly de-
fined property path with focus nodes; and (v) the property path of the property
shape referenced by the node shape with focus nodes through sh:property. Uti-
lizing these outcomes, shapes sharing identical focus nodes or property values,
derived from disparate sources, are recognized as equivalent shapes.

SCOOP all the Constraints’ Flavours for your Knowledge Graph 9

<student> a sh:NodeShape ;
 sh:node <studentType> ;
 sh:targetClass stu:Student .

<studentType> a sh:NodeShape;
 sh:property <grade> .

<grade> a sh:PropertyShape ;
 sh:minInclusive 0 ; sh:path stu:grade .

<studentShape>
 a sh:NodeShape ;
 sh:targetClass stu:Student ;
 sh:property <gradeShape> .

<gradeShape>
 a sh:PropertyShape ;
 sh:datatype xsd:integer ;
 sh:path stu:grade .

focusNode[<student>] = stu:Student

focusNode[<studentType>]
 = focusNode[<student>]
 = stu:Student

propertyValue[<grade>]
 = (focusNode[<studentType>], stu:grade)
 = (stu:Student, stu:grade)

<studentPS>
 a sh:PropertyShape ;
 sh:nodeKind sh:Literal ;
 sh:minCount 1 ;
 sh:targetClass stu:Student ;
 sh:path stu:grade .

focusNode[<studentShape>]
 = stu:Student

propertyValue[<grade>]
 = (focusNode[<studentShape>], stu:grade)
 = (stu:Student, stu:grade)

propertyValue[<studentPS>]
 = (stu:Student, stu:grade)

Shapes from source1 Shapes from source2 Shapes from source3

Equivalences
Identification

Equivalences
Identification

Equivalences
Identification

Fig. 3: An example process of the equivalences identification module. Iden-
tifiers of the same color refer to equivalent shapes.

Figure 3 presents an example of equivalences identification, emphasizing the
necessity of considering four scenarios. The first scenario’s equivalences calcu-
lation facilitates the determination of the focus nodes directly defined by node
shapes (e.g., <student> sh:targetClass stu:Student). The second scenario’s equiva-
lence calculation prevents the oversight of focus nodes indirectly defined through
sh:node reference relationships (e.g., <student> sh:node <studentType>). The
third scenario assists in identifying the focus node and property value pair
that is directly defined within the same property shape (e.g., <studentPS>
sh:targetClass stu:Student, sh:path stu:grade). The fourth scenario aids in deter-
mining the property value reached through the sh:property reference relationship
from the focus node (e.g., <studentShape> sh:property <gradeShape>).

4.3 Integration and Inconsistencies Resolution

To provide a variety of integration possibilities, we devised three approaches:
SCOOP-All, SCOOP-Prior, and SCOOP-Prior-R. All aims to integrate all con-
straints from all equivalent shapes, Prior aims to integrate constraints from
lower-priority shapes that are not inconsistent with higher-priority equivalent
shapes based on defined source priority, and R is designed to filter out redundant
shapes from the ontology based on higher-priority shapes. We also introduce the
inconsistencies resolutions for All and Prior to harmonize all constraints within
equivalent shapes to be integrated, mitigating inconsistencies in the final shape.

SCOOP and Resolution. For all algorithms, we initialize an empty graph
S to store the final unified shapes. We consider the current shape s as the
shape to be added and the current constraint c as the constraint to be added.
The constraints defined for shapes equivalent to s in S are denoted as C(s).
For SCOOP-All, we sequentially add s translated from different sources. If an
equivalent shape does not exist in S, we directly add s to S. Otherwise, we

10 Duan et al.

Table 2: The inconsistent combination of constraints slated for addition and the
corresponding constraints within the presently integrated shape.
Constraints to be added Inconsistent constraints

sh:datatype sh:nodeKind isnot sh:Literal
sh:nodeKind is (sh:IRIOrLiteral or sh:datatype or sh:languageIn or
sh:IRI or sh:BlankNodeOrLiteral or sh:minExclusive or sh:minInclusive or
sh:BlankNode or sh:BlankNodeOrIRI) sh:maxExclusive or sh:maxInclusive
sh:minCount > sh:maxCount
sh:maxCount < sh:minCount

sh:minExclusive
sh:nodeKind isnot sh:Literal or
≥ sh:maxExclusive or ≥ sh:maxInclusive

sh:minInclusive
sh:nodeKind isnot sh:Literal or
≥ sh:maxExclusive or > sh:maxInclusive

sh:maxExclusive
sh:nodeKind isnot sh:Literal or
≤ sh:minExclusive or ≤ sh:minInclusive

sh:maxInclusive
sh:nodeKind isnot sh:Literal or
≤ sh:minExclusive or < sh:minInclusive

sh:minLength sh:nodeKind isnot sh:Literal or > sh:maxLength
sh:maxLength sh:nodeKind isnot sh:Literal or < sh:minLength

perform constraint checks on C(s) and c (explained in detail below). In cases
where no inconsistencies are found, we add c directly to C(s). Conversely, we
reconstruct and integrate inconsistent constraints using sh:or. For SCOOP-Prior,
we traverse and add s into S based on the user-defined priorities of different
sources. Similarly, if an equivalent shape does not exist in S, we directly add s
to S, otherwise, we conduct an inconsistencies check. However, in cases of finding
an inconsistency, we refrain from adding c. Unlike SCOOP-Prior, SCOOP-Prior-
R refrains from adding s that is translated from ontology to S if there is no
equivalent shape in S.

Inconsistencies Check. We perform two types of constraint checks: (i)
internal checks based on the SHACL specification [27], determining whether
adding c violates the constraint’s cardinality restriction (e.g., a shape cannot
have two sh:minLength), and (ii) external checks based on Table 2, verifying if
there are inconsistencies between C(s) and c (e.g., C(s) contains sh:nodeKind
sh:IRI while c defines sh:datatype xsd:string). Specifically, we categorized the core
constraints into those constraints permitting at most one appearance in a shape
and those allowing multiple occurrences. We consider it an inconsistency if there
is a constraint in C(s) same as c that allows only one occurrence. All cases are
outlined in Table 2.

4.4 Implementation

SCOOP integrates RML2SHACL [9], Astrea [4], and XSD2SHACL [12] to ex-
tract shapes from the mappings, ontology, and XSD respectively, implements the
post-adjustment, equivalences identification, and integration and inconsistencies
resolution modules in the workflow (Fig. 1) as outlined in Algorithm 1, and pro-
vides configuration options with SCOOP-All, SCOOP-Prior, and SCOOP-Prior-

SCOOP all the Constraints’ Flavours for your Knowledge Graph 11

Algorithm 1: SCOOP implementation.
1 Function SCOOP(rml files = ∅, owl files = ∅, xsd files = ∅,

priority = [”rml”, ”owl”, ”xsd”], mode = [”All”, ”Prior”, ”Prior R”]):
2 shapes inorder, S ← ∅, Graph()
3 for source in priority do
4 if source is rml and rml files then
5 shapes ← RML2SHACL(rml files)

6 else if source is owl and owl files then
7 shapes ← OWL2SHACL(owl files)

8 else if source is xsd and xsd files then
9 xsd shapes ← XSD2SHACL(xsd files)

10 if rml files then
11 xsd shapes ← Post adjustment(shapes, rml files)

12 shapes inorder.add(shapes)

13 S ← shapes inorder[0]
14 for shape next in shapes inorder[1:] do
15 parseResults current ← Equivalences identification(S)
16 parseResults next ← Equivalences identification(shape next)
17 for parseResult in parseResults next do
18 if parseResult can be found in parseResults current then
19 S ← Inconsistencies resolution integration(S, shape next,

parseResult, parseResults current) // Check for inconsistencies
that may caused by constraints to be added and resolve them

20

21 else if mode is not Prior R then
22 S ← addConstraints(shape next, parseResult) // Direct add the

corresponding shape with constraints since there is no equivalent
shape that may raise inconsistencies found in the current shape

23

24 return S

R. SCOOP accepts files from diverse sources as input, with default user-defined
priority that accords precedence to mappings over ontology and over XSD, ul-
timately yielding a unified shapes graph. Besides, the SCOOP framework can
be expanded to incorporate shapes from supplementary sources, such as CSVW
and JSON Schema. The code and usage instructions for SCOOP are available
online on the GitHub repository: https://github.com/dtai-kg/SCOOP.

5 Evaluation

We performed a comprehensive analysis, encompassing both performance and
coverage aspects, to evaluate the effectiveness of SCOOP in addressing real-
world use cases and compared it with current state-of-the-art systems.

Systems.We selected a state-of-the-art system from each of the RDF graphs,
ontologies,mappings, and raw data schemas-based systems for extracting SHACL
shapes to serve as a point of comparison. For the RDF graphs-based system,
we considered the available systems, including SHACLGEN [1], SheXer [20],
and QSE [31], ultimately opting for QSE. This selection was influenced by
QSE’s broader coverage of constraints compared to other systems [32]. For
the ontologies-based system, our considerations encompass Astrea [4] and the
OWL2SHACL conversion rules [21]. We finally selected Astrea due to the avail-
ability of detailed information on its implementation and performance [6], which

https://github.com/dtai-kg/SCOOP

12 Duan et al.

is absent for OWL2SHACL. For the systems based on mapping rules and raw
data schemas, we opted for RML2SHACL [9] and XSD2SHACL [12].

Datasets. To demonstrate our framework’s potential, we leverage the real-
world use case RINF [36], the railway infrastructure register published by each
country, containing the infrastructure parameters applied to the railway system.
RINF includes raw XML data from 30 countries, 28 RML files2, the ERA on-
tology version 3.0.0 [15], an OWL ontology, and the RINF XSD Schema version
1.5 [37]. We arrange the XML data from 30 countries in ascending order of size
and progressively construct RDF graphs using the RML mapping rules and the
RMLMapper [25]. The minimum RDF graph (0.003 GB) comprises solely the
smallest XML dataset, while the largest RDF graph (8.52 GB) incorporates data
from all countries. The constructed RDF graphs serve as input for QSE.

Experimental Setup. We conduct all experiments on a Rocky 8.8 Linux
based system with Intel(R) Xeon(R) Gold 6140 CPUs running at 2.30 GHz, con-
figured with 128 GB RAM and 32 cores. We experimented with SCOOP v1.0.0 in
its different configurations (i.e. SCOOP-All, SCOOP-Prior, and SCOOP-Prior-
R) under different input combinations. We executed the RML2SHACL v1.0.0,
Astrea v1.2.1, and XSD2SHACL v1.0.0 systems as per the instructions outlined
in their repositories. Regarding QSE (pvldb release), we ran QSE-Exact with con-
fidence ≥ 25% and support ≥ 100%, and QSE-Approx with confidence ≥ 25%,
support ≥ 100%, sampling percentage of 50%, and reservoir size of 5000.

Performance Analysis. We evaluated the running time and maximum
memory usage of different systems (average of 5 runs) in the RINF use case
across diverse data sizes. Fig. 4 illustrates the running time and maximum mem-
ory usage of different systems, with both figures including only one QSE-Exact
and one SCOOP-Prior-R due to negligible differences between the various ap-
proaches. Fig. 4b shows QSE and SCOOP exclusively, as the results for other
systems align closely with those of SCOOP.

Our experiments demonstrate that the memory usage of the QSE increases
approximately linearly with the size of the RDF graph, and the maximum mem-
ory usage of QSE is higher than SCOOP in all experiments. The running time of
QSE is higher than all non-RDF-based systems without post-adjustment when
the RDF graph’s size exceeds 0.10GB; is higher than XSD2SHACL with post-
adjustment when the graph size exceeds 2.73GB; and is higher than SCOOP
when the RDF graph’s size exceeds 3.30GB. The running time of SCOOP is pri-
marily influenced by the post-adjustment phase, while the triggering and integra-
tion of shapes incur relatively less time. SCOOP’s memory usage is independent
of the RDF graph’s size. SCOOP uses lower memory usage than QSE through-
out all experiments, and surpasses QSE in terms of running time when the RDF
graph’s size exceeds 3.30 GB, ensuring scalability for larger RDF graphs.

Coverage Analysis. We conducted a statistical analysis of the extracted
shapes concerning targeting sufficient classes and properties and generating rich
constraints. We extracted the involved 21 classes and 223 properties of the largest

2 The mapping rules will be publicly available soon by ERA (era.europa.eu/).

era.europa.eu/

SCOOP all the Constraints’ Flavours for your Knowledge Graph 13

(a) Running time. (b) Maximum memory usage.

Fig. 4: (a) Running time and (b) Maximum memory usage comparison across
various systems on the RINF use case.

RDF graph (8.52 GB), which includes all raw data as the ground truth. We also
chose the shapes produced by QSE on this RDF graph for comparison.

We compared the classes defined by the sh:targetClass and the properties
defined by the sh:path referenced by shapes containing target declarations in the
extracted shapes with the ground truth to calculate precision (P), recall (R), and
F1 score. We also assessed the richness of constraints within shapes. Following
the SHACL specification [28], we categorized SHACL core constraints into eight
categories: Value Type (VT), Value Range (VR), String-based (SR), Property
Pair (PP), Logical (LG), Shape-based (SA), Other (OT) which also includes
sh:name and sh:description, and analyze the coverage for each category. Table 3
show that SCOOP-Prior-R performs comparably to XSD2SHACL with our post-
adjustment module, and surpasses all other systems in defining sufficient classes
and properties. SCOOP-All generates the richest constraints, and all SCOOP
systems surpass QSE by generating more than twice the types of constraints.

Coverage Analysis in Classes. Examining the outcomes for the targeted classes,
QSE and systems involving RML demonstrate the capability of perfectly tar-
geting classes. The exceptional performance of QSE in class extraction is fore-
seeable, given its input is the target RDF graph. Among the non-RDF-systems,
RML2SHACL benefits from RML, aligning perfectly with the target RDF graph’s
classes. Our implemented post-adjustment helps XSD2SHACL to capture infor-
mation from RML, thereby achieving full scores across all metrics. However,
Astrea exhibits lower precision, a common issue in systems extracting shapes
from ontologies, because ontologies cover the entire domain but the target RDF
graph may only involve a subset, resulting in many unnecessary shapes. In the
case of the SCOOP-All and SCOOP-Prior, the inclusion of the entire ontology
negatively impacts the precision where SCOOP-Prior-R is specifically designed
to mitigate the issue of redundant shapes generated by ontologies. The results
demonstrate that SCOOP-Prior-R achieves full scores across all metrics for all
input combinations, indicating its stronger robustness.

14 Duan et al.

Table 3: The precision (P), recall (R), and F1 score on the extracted classes
and properties, and the coverage of constraints: Value Type (VT), Cardinality
Constraint (CD), Value Range (VR), String-based (SR), Property Pair (PP),
Logical (LG), Shape-based (SA), Other (OT). PA refers to the post-adjustment.

Systems
Classes Properties Core Constraints

P R F1 P R F1 VT CD VR SR PP LG SA OT Total

QSE-Exact 1.0 1.0 1.0 1.0 0.44 0.61 2 1 0 0 0 0 1 2 7
QSE-Approx 1.0 1.0 1.0 1.0 0.44 0.61 2 1 0 0 0 0 1 2 7

RML2SHACL 1.0 1.0 1.0 1.0 0.26 0.41 2 0 0 1 0 0 2 0 5
Astrea 0.45 1.0 0.62 0.44 0.94 0.60 3 1 0 1 1 2 4 2 14

XSD2SHACL+PA 1.0 1.0 1.0 0.98 1.0 0.99 2 2 0 2 0 0 2 1 9

S
C
O
O
P

A
ll

rml+owl 0.45 1.0 0.62 0.45 0.98 0.62 3 1 0 1 1 2 5 2 15
rml+xsd 1.0 1.0 1.0 0.98 1.0 0.99 2 2 0 3 0 1 2 1 11

rml+owl+xsd 0.45 1.0 0.62 0.45 1.0 0.62 3 2 0 3 1 2 5 2 18

S
C
O
O
P

P
ri
o
r

rml+owl 0.45 1.0 0.62 0.45 0.98 0.62 3 1 0 1 1 1 5 2 14
rml+xsd 1.0 1.0 1.0 0.98 1.0 0.99 2 2 0 3 0 0 2 1 10

rml+owl+xsd 0.45 1.0 0.62 0.45 1.0 0.62 3 2 0 3 1 1 5 2 17

S
C
O
O
P

P
ri
o
r-
R rml+owl 1.0 1.0 1.0 1.0 0.26 0.41 3 1 0 1 0 0 5 2 12

rml+xsd 1.0 1.0 1.0 0.98 1.0 0.99 2 2 0 3 0 0 2 1 10
rml+owl+xsd 1.0 1.0 1.0 0.98 1.0 0.99 3 2 0 3 0 0 5 2 15

Coverage Analysis in Properties. In terms of targeted properties, SCOOP ex-
hibits superior overall performance compared to other systems. The low recall
scores of QSE indicate that they omit many properties during the shape ex-
traction process. We attribute this to their novel extraction method based on
support and confidence score, which, in an attempt to filter out spurious shapes,
also filter out some properties present in the RDF graph. The low recall values
observed in RML2SHACL can be attributed to instances where certain property
shapes lack references from target declarations. This is attributed to implicit
class definitions in our RML use case, where multiple triples maps are involved,
with only one explicitly defining the class, while the others imply its existence us-
ing the same subject map. However, RML2SHACL fails to capture this implicit
definition, resulting in the oversight of certain reference relationships. In con-
trast, our post-adjustment module combined with XSD2SHACL performs well
and does not encounter this issue because we considered implicit class definitions
when parsing RML, and the precision of 0.98 suggests that the generated RDF
graph may not have produced some expected triples due to missing raw data.
In addition, Astrea’s lower precision score in property extraction is ascribed to
the ontology’s broader coverage of properties. The performance of all SCOOP
approaches with RML and XSD as inputs overcomes all other systems.

Coverage Analysis in Constraints. The analysis of core constraints confirms the
outstanding performance of SCOOP in terms of constraint richness. The shapes
extracted by SCOOP-All encompass a total of 18 distinct constraints, slightly
surpassing SCOOP-Prior, SCOOP-Prior-R, and Astrea, marginally higher than
XSD2SHACL, and markedly superior to both QSE and RML2SHACL. Further-
more, with regard to the SCOOP-All, we conducted a fine-grained analysis of

SCOOP all the Constraints’ Flavours for your Knowledge Graph 15

the contributions of different sources to the final constraints. Among the 18 fi-
nal constraints, 5 originate from RML, 14 from the ontology, and 9 from XSD.
In particular, the ontology covers property pair constraints (e.g., sh:equals) and
logical constraints (e.g., sh:not) not covered by other sources.

Practical Implications on Validation. We assessed the effectiveness of
SCOOP to extract valid SHACL shapes by validating an RDF graph using those
shapes. We used the pySHACL validator [38] to validate the smallest RDF graph
(0.003 GB, 1620 triples) constructed from RINF. Due to violations of SHACL
syntax in shapes generated by QSE, e.g., multiple occurrences of sh:in, and
Astrea, e.g., missing sh:path, we could not directly use their shapes for validation.

The validation results indicated that the target RDF graph conformed to all
shapes generated by RML2SHACL but violated shapes generated by other sys-
tems. Specifically, the shapes extracted by XSD2SHACL revealed 738 missing
triples and 540 error triples (e.g., sh:maxLength, sh:datatype, and sh:nodeKind).
We analyzed the additional violations found by XSD2SHACL, attributing them
to lingering issues from mismatched versions of XSD and RML. SCOOP-Prior
and SCOOP-R, incorporating the mapping rules, ontology, and XSD, discovered
738 missing triples and 972 error triples (involving sh:class and sh:maxLength).
We attribute this to the introduction of constraints from the ontology, distin-
guishing it from XSD2SHACL. SCOOP-All, including all sources, also identi-
fied 738 missing triples but labeled 864 error triples (involving only sh:class),
slightly fewer than SCOOP-Prior. This was reasonable as SCOOP-All’s strategy
of adding sh:or introduces more lenient constraints to the RDF graph. In sum-
mary, this experiment demonstrates that our SCOOP framework strictly adheres
to SHACL syntax, and provides users with effective RDF validation results.

6 Conclusion

In this paper, we propose SCOOP, an open-source framework designed to inte-
grate existing shape extraction systems targeting diverse sources into a unified
and comprehensive shapes graph. SCOOP consists of three modules and devises
three integration approaches to provide diverse choices. The implementation of
SCOOP includes the incorporation of RML2SHACL, Astrea, and XSD2SHACL.
SCOOP exhibits significantly lower memory usage compared to RDF-based sys-
tems, performs faster when the RDF graph exceeds 3.30 GB in size, and outper-
forms state-of-the-art systems in extracting effective node and property shapes
and generating richer constraints.

SCOOP is an extensible framework that goes beyond current sources and sys-
tems, including ontologies, mapping rules, and raw data schemas. The method-
ology is transferable to any SHACL shapes extraction work, therefore, seamless
integration with other systems can be easily achieved. In the future, we will
extend SCOOP to a broader range of sources, e.g., CSVW, JSONSchema, etc.

SCOOP enables users to extract SHACL shapes effortlessly, without even
having to construct the RDF graphs using hardware with limited resources. It
is expected that this framework will have a high impact on the Semantic Web
community as most RDF graphs nowadays are constructed from various data.

16 Duan et al.

Acknowledgement

Xuemin Duan and Anastasia Dimou are partially supported by Flanders Make,
the research centre for the manufacturing industry, and the Flanders innovation
and entrepreneurship (VLAIO) through the KG3D project. David Chaves-Fraga
is funded by the Galician Ministry of Education, University and Professional
Training and the European Regional Development Fund (ERDF/FEDER pro-
gram) through grants ED431C2018/29 and ED431G2019/04. The resources and
services used in this work were provided by the VSC (Flemish Supercomputer
Center), funded by the Research Foundation - Flanders (FWO) and the Flemish
Government.

References

1. Arndt, N.: SHACLGEN. https://github.com/AKSW/shaclgen, accessed on
20.09.2023

2. Bock, C., Fokoue, A., Haase, P., Hoekstra, R., Horrocks, I., Ruttenberg, A., Sattler,
U., Smith, M.: OWL 2 Web Ontology Language – Structural Specification and
Functional-Style Syntax (Second Edition). Recommendation, World Wide Web
Consortium (W3C) (Dec 2012), http://www.w3.org/TR/owl2-syntax/

3. Boneva, I., Dusart, J., Fernández Alvarez, D., Gayo, J.E.L.: Shape Designer for
ShEx and SHACL Constraints. In: Proceedings of the ISWC 2019 Satellite Tracks
(Poster & Demonstrations, Industry, and Outrageous Ideas). vol. 2456, pp. 269–
272. CEUR (Oct 2019)

4. Cimmino, A.: Astrea. https://github.com/oeg-upm/astrea, accessed on
20.09.2023

5. Cimmino, A., Fernández-Izquierdo, A., Garćıa-Castro, R.: Astrea: Automatic Gen-
eration of SHACL Shapes from Ontologies. In: European Semantic Web Conference
(ESWC). Springer, Springer International Publishing (2020)

6. Cimmino, A., Fernández-Izquierdo, A., Garćıa-Castro, R.: Astrea: Automatic Gen-
eration of SHACL Shapes from Ontologies. In: European Semantic Web Confer-
ence. pp. 497–513. Springer (2020)

7. Comelli, T.: JS2SHACL - JSON Schema to SHACL conversor. https://github.
com/ThiagoCComelli/JS2SHACL-JSON-Schema-to-SHACL-conversor, accessed on
20.09.2023

8. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language.
Working group recommendation, World Wide Web Consortium (W3C) (Sep 2012),
http://www.w3.org/TR/r2rml/

9. Delva, T.: RML2SHACL. https://github.com/RMLio/RML2SHACL, accessed on
20.09.2023

10. Delva, T., Smedt, B.D., Oo, S.M., Assche, D.V., Lieber, S., Dimou,
A.: RML2SHACL: RDF Generation Taking Shape. In: Proceedings of the
11th on Knowledge Capture Conference. pp. 153–160. ACM (Dec 2021).
https://doi.org/10.1145/3460210.3493562

11. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de
Walle, R.: RML: A Generic Language for Integrated RDF Mappings of Hetero-
geneous Data. In: Proceedings of the 7th Workshop on Linked Data on the Web.
vol. 1184. CEUR Workshop Proceedings (2014)

https://github.com/AKSW/shaclgen
http://www.w3.org/TR/owl2-syntax/
https://github.com/oeg-upm/astrea
https://github.com/ThiagoCComelli/JS2SHACL-JSON-Schema-to-SHACL-conversor
https://github.com/ThiagoCComelli/JS2SHACL-JSON-Schema-to-SHACL-conversor
http://www.w3.org/TR/r2rml/
https://github.com/RMLio/RML2SHACL
https://doi.org/10.1145/3460210.3493562

SCOOP all the Constraints’ Flavours for your Knowledge Graph 17

12. Duan, X.: XSD2SHACL. https://doi.org/10.5281/zenodo.8318452 (2023), ac-
cessed on 20.09.2023

13. Duan, X., Chaves-Fraga, D., Dimou, A.: XSD2SHACL: Capturing RDF Con-
straints from XML Schema. In: Proceedings of the 12th Knowledge Capture Con-
ference 2023. p. 214–222. K-CAP ’23, Association for Computing Machinery (2023).
https://doi.org/10.1145/3587259.3627565

14. Ekaputra, F.J., Llugiqi, M., Sabou, M., Ekelhart, A., Paulheim, H., Breit, A.,
Revenko, A., Waltersdorfer, L., Farfar, K.E., Auer, S.: Describing and Organizing
Semantic Web and Machine Learning Systems in the SWeMLS-KG. In: Pesquita,
C., Jimenez-Ruiz, E., McCusker, J., Faria, D., Dragoni, M., Dimou, A., Troncy,
R., Hertling, S. (eds.) The Semantic Web. vol. 13870, pp. 372–389. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-33455-9 22

15. European Union Agency for Railways: ERA vocabulary. https://data-interop.
era.europa.eu/era-vocabulary/, accessed on 20.09.2023

16. Fallside, D., Walmsley, P.: XML Schema Part 0: Primer Second Edition. Recom-
mendation, W3C (Oct 2004), https://www.w3.org/TR/xmlschema-0/

17. Felin, R., Faron, C., Tettamanzi, A.G.B.: A Framework to Include and Exploit
Probabilistic Information in SHACL Validation Reports. In: The Semantic Web.
Springer Nature Switzerland (2023)

18. Fernández-Álvarez, D., Garćıa-González, H., Frey, J., Hellmann, S., Gayo, J.E.L.:
Inference of Latent Shape Expressions Associated to DBpedia Ontology. In: Pro-
ceedings of the ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas
Tracks co-located with 17th International Semantic Web Conference (ISWC 2018).
vol. 2180. CEUR Workshop Proceedings (2018)

19. Fernandez-Álvarez, D., Labra-Gayo, J.E., Gayo-Avello, D.: Automatic extrac-
tion of shapes using sheXer. Knowledge-Based Systems 238, 107975 (Feb 2022).
https://doi.org/10.1016/j.knosys.2021.107975

20. Fernández-Álvarez, D.: sheXer. https://github.com/DaniFdezAlvarez/shexer,
accessed on 10.11.2023

21. Francart, T.: OWL2SHACL. https://github.com/sparna-git/owl2shacl, ac-
cessed on 10.11.2023

22. Garcia-Gonzalez, H., Labra-Gayo, J.E.: XMLSchema2ShEx: Converting XML val-
idation to RDF validation. Semantic Web 11(2) (2020)

23. Ghiasnezhad Omran, P., Taylor, K., Rodŕıguez Méndez, S., Haller, A., et al.: To-
wards SHACL learning from knowledge graphs. In: Proceedings of the ISWC 2020
Demos and Industry Tracks: From Novel Ideas to Industrial Practice co-located
with 19th International Semantic Web Conference (ISWC 2020). vol. 2721, pp.
94–99. CEUR Workshop Proceedings (2020)

24. Harshvardhan J. Pandit, Declan O’Sullivan, D.L.: Using Ontology Design Patterns
to Define SHACL Shapes. In: 9th Workshop on Ontology Design and Patterns
(WOP2018). vol. 2195, pp. 67–71. CEUR-WS, Monterey California, USA (2018)

25. Heyvaert, P., Meester, B.D., et al.: RMLMapper-java. https://github.com/

RMLio/rmlmapper-java, accessed on 20.09.2023

26. Iglesias-Molina, A., Van Assche, D., Arenas-Guerrero, J., De Meester, B., De-
bruyne, C., Jozashoori, S., Maria, P., Michel, F., Chaves-Fraga, D., Dimou, A.:
The RML Ontology: A Community-Driven Modular Redesign After a Decade
of Experience in Mapping Heterogeneous Data to RDF. In: The Semantic Web
– ISWC 2023: 22nd International Semantic Web Conference, Athens, Greece,
November 6–10, 2023, Proceedings, Part II. p. 152–175. Springer-Verlag (2023).
https://doi.org/10.1007/978-3-031-47243-5 9

https://doi.org/10.5281/zenodo.8318452
https://doi.org/10.1145/3587259.3627565
https://doi.org/10.1007/978-3-031-33455-9_22
https://data-interop.era.europa.eu/era-vocabulary/
https://data-interop.era.europa.eu/era-vocabulary/
https://www.w3.org/TR/xmlschema-0/
https://doi.org/10.1016/j.knosys.2021.107975
https://github.com/DaniFdezAlvarez/shexer
https://github.com/sparna-git/owl2shacl
https://github.com/RMLio/rmlmapper-java
https://github.com/RMLio/rmlmapper-java
https://doi.org/10.1007/978-3-031-47243-5_9

18 Duan et al.

27. Knublauch, H., Kontokostas, D.: SHACL-SHACL. http://www.w3.org/ns/

shacl-shacl#, accessed on 01.12.2023
28. Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL). Recom-

mendation, W3C (2017), https://www.w3.org/TR/shacl/
29. Mihindukulasooriya, N., Rashid, M.R.A., Rizzo, G., Garcia-Castro, R., Corcho,

O., Torchiano, M.: RDF Shape Induction using Knowledge Base Profiling. In: Pro-
ceedings of the 33rd ACM/SIGAPP Symposium On Applied Computing (2017)

30. Pandit, H.J., O’Sullivan, D., Lewis, D.: Using Ontology Design Patterns To Define
SHACL Shapes. In: Proceedings of the 9th Workshop on Ontology Design and
Patterns (WOP 2018) co-located with 17th International Semantic Web Conference
(ISWC 2018). vol. 2195, pp. 67–71. CEUR (2018)

31. Rabbani, K.: Quality Shapes Extraction (QSE). https://github.com/dkw-aau/
qse, accessed on 20.09.2023

32. Rabbani, K., Lissandrini, M., Hose, K.: Extraction of Validating Shapes from very
large Knowledge Graphs [Extended Version]

33. Rabbani, K., Lissandrini, M., Hose, K.: SHACL and ShEx in the Wild: A Com-
munity Survey on Validating Shapes Generation and Adoption. In: Companion
Proceedings of the Web Conference 2022. p. 260–263. WWW ’22, Association for
Computing Machinery (2022). https://doi.org/10.1145/3487553.3524253

34. Rabbani, K., Lissandrini, M., Hose, K.: Extraction of Validating Shapes from Very
Large Knowledge Graphs. Proceedings of the VLDB Endowment 16(5) (2023)

35. Rabbani, K., Lissandrini, M., Hose, K.: SHACTOR: Improving the Qual-
ity of Large-Scale Knowledge Graphs with Validating Shapes. In: Proceed-
ings of the 2023 International Conference on Management of Data, (SIGMOD-
Companion ’23). pp. 151–154. Association for Computing Machinery (2023).
https://doi.org/10.1145/3555041.3589723

36. RINF, T.: RINF: Railway infrastructure register. https://www.rinf-ch.ch/, ac-
cessed on 01.12.2023

37. RINF, T.: RINF XML Schema v1.5. https://www.era.europa.eu/domains/

registers/rinf_en, accessed on 01.12.2023
38. Sommer, A., Car, N.: pySHACL. https://github.com/RDFLib/pySHACL (Jan

2022). https://doi.org/10.5281/zenodo.4750840, https://github.com/RDFLib/

pySHACL

39. Spahiu, B., Maurino, A., Palmonari, M.: Towards Improving the Quality of Knowl-
edge Graphs with Data-driven Ontology Patterns and SHACL. In: Workshop on
Ontology Design Patterns (WOP) at ISWC (Best Workshop Papers). CEURWork-
shop Proceedings, vol. 2195, pp. 52–66. CEUR (2018)

40. Thapa, R.B., Giese, M.: A Source-to-Target Constraint Rewriting for Direct
Mapping. In: The Semantic Web – ISWC 2021. pp. 21–38. Springer (2021).
https://doi.org/10.1007/978-3-030-88361-4 2

http://www.w3.org/ns/shacl-shacl#
http://www.w3.org/ns/shacl-shacl#
https://www.w3.org/TR/shacl/
https://github.com/dkw-aau/qse
https://github.com/dkw-aau/qse
https://doi.org/10.1145/3487553.3524253
https://doi.org/10.1145/3555041.3589723
https://www.rinf-ch.ch/
https://www.era.europa.eu/domains/registers/rinf_en
https://www.era.europa.eu/domains/registers/rinf_en
https://github.com/RDFLib/pySHACL
https://doi.org/10.5281/zenodo.4750840
https://github.com/RDFLib/pySHACL
https://github.com/RDFLib/pySHACL
https://doi.org/10.1007/978-3-030-88361-4_2

	SCOOP all the Constraints' Flavours for your Knowledge Graph

