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Abstract. Knowledge Graphs (KG) have risen to be a powerful mecha-
nism to represent knowledge. Despite this most data sources are generally
still represented via heterogeneous non-graph data structures. Convert-
ing these into KGs necessitates considerable effort from experts, proving
this to be a time consuming process. While tools have been developed
to aid KG builders, a gap still exists in terms of technologies that sup-
port the automation of designing KG building pipelines. Addressing this
gap motivates this research. To do this the aim is to first understand
the problem at the knowledge level and, inspired by the recent release
of generative tools such as GPT-Engineer, to put forward a symbolic-
generative hybrid artifact aimed at solving it. We report on the prelimi-
nary findings that we have so far reached during the first year of research
in deriving the requirements for building KG generating pipelines from
the literature.
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1 Introduction and Motivation

Knowledge Graphs [13] have risen to be one the most powerful mechanisms to
represent knowledge and have been shown to play an important role for many
applications, including conversationl agents, data integration, and recommender
systems [32].

However, most data sources come in non-heterogeneous non-graph data struc-
tures, schemes, and formats [7]. The conversion of these sources into KG rep-
resentations involves a range of specific tasks. These span from mapping tasks,
such as mapping a specific data type to its specific URI format, through to on-
tology engineering tasks such as aligning data specific vocabulary with known
vocabularies. A central problem is also the overarching organisation of these
tasks into a pipeline whereby one is able to go from the original data to the KG.
This whole process necessitates a considerable effort from both KG engineers and
domain experts, showing this to be an often time consuming and complicated
process [3].

While advances have been made in terms of supporting KG engineers in their
work, “existing techniques offer [...] solutions, each covering a specific aspect of
KG construction, but automatically orchestrating [...] the whole construction
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process remains the challenge" [14]. Addressing this challenge would pose ques-
tions such as, for example, given data sources and a target ontology can a pipeline
from the sources to the target KG be generated automatically? If human inter-
vention is required in the process, what is the nature and extent of this input?
And What is the role and extent of background knowledge? Addressing this
challenge and such questions is the motivation behind this research.

To accomplish this, we first aim to understand the problem of KG design
and generation at the knowledge level, beginning with a review of the relevant
literature looking at how KG builders have concretely generated KG building
pipelines as a source of knowledge. The purpose is to discover and represent
the required KG tasks and operations, and from these to build a systematising
model of KG tasks and ways to compose them inspired by problem solving
methods. Influenced by recent generative tools such as GPT-Engineer1, where
the user interacts conversationally with the agent to develop code, and under
the assumption that we can model the problem of integrating structured and
semi-structured sources as one of graph-to-graph transformations, the aim is to
build a symbolic-generative hybrid agent that supports users in the designing
and executing of KG generation pipelines for structured and semi-structured
sources.

Thus, our objectives are: (i) enriching the theoretical understanding of KG
design and generation by looking into the existence of abstractable KG building
tasks (i.e. that go beyond a single use-case) and using these to formulate abstract
high-level tasks, (ii) extending the application domain of AI to the design of
KG generating pipelines through the orchestration of tasks and (iii) supporting
the community of practitioners by releasing novel methods for designing and
organising KG building.

The remainder of the paper is structured as follows. First, we delve into the
state of the art and related work, then we proceed to state our research ques-
tions and contribution. Following from that we proceed to describe our intended
methodology and the evaluation approach. Finally we report on the early find-
ings that we have so far achieved in the abstraction of general KG construction
tasks from the literature during this first year of research.

2 State of the Art

We now consider related work on knowledge engineering, data integration, KGs,
KG construction, graph-to-graph transformation, ontology alignment and AI.

As it is not assumed that the required tasks and the methods for solving them
are known beforehand, we take a knowledge engineering approach to tackling our
problem. This entails that the practice of KG engineers and creators is taken
as "a source of knowledge that cannot be obtained from anywhere else" [23]
and that a knowledge based system "is not a container filled with knowledge
extracted from an expert, but an operational model that exhibits some desired

1 https://github.com/gpt-engineer-org/gpt-engineer



AI supported Knowledge Graph Design & Generation 3

behaviour observed or specified in terms of real-world phenomena" [30]. Central
to a knowledge engineering approach are also problem solving methods (PSMs)
[9], which are domain-independent reasoning components specifying reusable
patterns of behaviour. Furthermore, when we speak of automation we usually
refer to the automation of a process at the knowledge level, where we consider
a solution to the problem via the design of actions, goals and body of a hybrid
symbolic-generative agent.

The application domain of this research falls under the umbrella of data
integration processes. Lenzerini [19] formalises such a process. This combines
data from heterogeneous sources into a single unified view available to a user or
client. Its basic components are the heterogeneous data sources, a global schema
acting as a mediator and view of this underlying data and the mappings that
connect the information contained in the sources to the schema of the global
view. For us this global view is a KG.

By KG we understand a graph intended to accumulate and convey knowledge
of an object whose nodes represent entities of interest and whose edges represent
relations between these entities [13]. A number of approaches and tools have
been developed to aid KG engineers in their work. Central to the task of KG
construction has been the effort put into the development of W3C recommended
R2RML/RML mapping languages for the creation of RDF mappings [29][8][16]
and the tools that materialise them [15][7][1][2]. Further technologies include
methods for resolving data heterogeneity such as Ontology Based Data Access
(OBDA) [5][4], Extract Transform Load (ETL) based tools [27], and SPARQL
based tools [18]. Further, there are also multi-agency [22] and deep-learning
[31] approaches for schema matching and ontology mapping, and a variety of
fuzzy logic, probabilistic soft logic and machine/deep learning methods [14].

One of the foundational assumptions of this work is that we can frame the
problem of designing KG generation pipelines as one of graph-to-graph manipu-
lation. The Facade-X methodology [3] is therefore one of the starting points of
the artifact development process as it can resolve from the start the heterogeneity
of the data sources into graphs. This methodology assumes an iterative process
of two phases: (a) re-engineering, where the task is to resolve the heterogeneous
formats of the sources into a graph, and (b) re-modelling, where the main ob-
jective is to add semantics [6]. High-level tasks undertaken during these phases
include: (i) specifying a representative ontology for the sources, (ii) extracting the
information (e.g. entity recognition/resolution, schema matching, defining map-
pings, schema learning), (iii) generating the graph from the mappings and (iv)
KG evaluation and quality assessment (completeness, redundancy, correctness,
etc.). Crucially, his assumption allows to connect our approach and methods
with those from the field of graph transformation/re-writing, which focuses on
geometrical and rule based methods for graph to graph manipulations [10][11],
and with those from ontology matching and alignment [25][17].

Recently a lot of the attention in the AI community and beyond has focused
on deep learning and especially large language models (LLMs) as possibly uni-
versal means for the development of AI and real-world programming tasks [28]



4 Marco Ratta

although not without debate in the community [21]. Their use for the generation
of KGs has also been the object of engineering exploration [20][24].

Finally, the aim is to implement a methodology based on the principles of
design science [26]. Design science based development is an iterative process that
can be viewed as embodiment of three closely related cycles of activities that
are happening simultaneously: the relevance cycle, the rigor cycle and the design
cycle [12]. The relevance cycle is concerned with the introduction of input re-
quirements from the contextual environment into the development process and
introduces the research artifacts into environmental field testing. The purpose of
the rigor cycle is to ensure the proper theoretical grounding of our development
work. The purpose of the design cycle is instead to generate design alterna-
tives and evaluate these alternatives against the requirements provided by the
relevance cycle and the rigor cycle.

3 Problem Statement and Contributions

The overarching research question of the project is the following:
(RQ1) How can the development of Knowledge Graph generating processes

from structured and semi-structured data sources be automated?
The answer to this question can be broken into two interconnected parts, each

with their own sub-questions. For the first part, concerned with requirements and
theoretical rigor, we ask:

(RQ2) are there general features, specifically tasks, in Knowledge Graph gen-
eration pipelines that are shared and that can be abstracted?

(RQ3) how can we systematise our findings into a model of the process of
designing Knowledge Graph generating pipelines at the knowledge level?

For the second part, concerned with implementation, our target is that given
a set of data sources and a set of ontologies, the system aids in the designing
of a KG generating pipeline derived from the given inputs. Our assumption is
that this can be achieved through a hybrid symbolic and generative AI system,
supported by breaking down the problem into tasks that can be addressed by
PSMs that are to be applied to graph-to-graph transformations. But is this
actually required and is it beneficial with respect to an approach based say
solely on using an LLM and prompt engineering? Therefore,

(RQ4) Does the breaking down of the problem into tasks and methods help
with the creation of KG generating pipelines?

(RQ5) Can the process of converting and integrating structured and semi-
structured sources be adequately modelled as a problem of graph-to-graph trans-
formations?

It is also the case that, for example, in a task of entity alignment where the
same entity is referenced by name in one source and by an identification number
in a second sources requires a background knowledge that only a user acquainted
with the sources can provide. This is a central issue as no AI agent, symbolic or
not, can predict what it has not seen. Thus, it can be asked
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(RQ6) how much of the process of KG design and generation can be auto-
mated?

(RQ7) Which parts of the process require necessary human intervention (e.g.
providing background knowledge)? What is the nature and extent of this inter-
vention?

(RQ8) What is the impact of this intervention on the generated pipelines?
Can these be linear from source to target or must they include iterative problem
solving structures?

4 Research Methodology and Approach

To carry out the research programme we intend to implement a methodology
based on the principles of design science as follows.

The first step is to conduct a literature review of relevant sources. As parts
of the relevance cycle and the rigor cycle are concerned with introducing require-
ments into the development process, the plan is to collect these empirically by
looking at how KG builders have operated concretely. The target is then twofold.
We look first for the KG task required to answer the research questions of the
first part (RQ1-3) and we collect a variety of other data related to concrete KG
pipelines. This includes for example the provenance of the sources (i.e. numer-
ical, textual, etc.), their formats (csv, xml, etc.), the producing stakeholders of
the graphs (semantic web researchers, government institutions, etc.) or the tools
that have been used to generate the graphs. As this PhD is in its first year this
step is being carried out at the moment.

The second step is to classify and systematise the tasks abstracted in the first
to build the knowledge level model that will contain the answers to the research
questions of the first part of the PhD (RQ1-3). Following this is the development
on the basis of this model of a series of problem solving methods. These initial
three steps are required in order to complete the theoretical background of the
rigor cycle.

Once the requirements have been formalised, the next step is to begin to
implement the design cycle and the application of the problem solving meth-
ods that have been developed to graph-to-graph transformations. Within this a
number of crucial design choices will also require implementation. These include,
for example, determining the distribution of the tasks between the artifact and
the user (RQ6), the specification of the role of the user interacting with the sys-
tem and the necessary background knowledge (RQ7-8) and the task distribution
model between symbolic and generative AI methods.

Finally, to conclude the relevance and design cycle, we plan to implement an
evaluation of the artifact produced through a compare and contrast approach,
using a dataset of KGs that have been built with already tried and tested meth-
ods and thus also evaluating some of our initial assumptions (RQ4-5).
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5 Evaluation Plan

We plan to evaluate our work through the following key and overarching KG
construction goals, listed in an increasing order of difficulty:

1. Given the data sources and the target ontology, generate the KG building
pipeline.

2. Given the data sources and multiple ontologies, select the subset of repre-
sentative ontologies and generate the KG building pipeline.

3. Given applicable tasks and data sources, build a KG graph generating the
relevant semantics.

To do this we plan to compare the results obtained with our artifact with
those from a dataset of graphs already obtained via established KG construction
methods using data from Open Knowledge Graph 2, healthcare data from Data
Commons 3, cultural heritage data from the Tate gallery 4 and finally musical
data from the Neuma 5 digital library and the Digital and Cognitive Musicology
Lab6.

Following FAIR 7 open science practices, we release the artifact on the GitHub
platform to make it available for reproducibility.

6 Preliminary Findings

We now report on the early findings that we have obtained from the literature
review. This is being conducted on a selection of papers from four publications,
the Semantic Web Journal 8, the Journal of Web Semantics 9 and the conference
proceedings from the Extended Semantic Web Conference and the International
Semantic Web Conference. Isolating a small sample of relevant papers deemed
relevant, we constructed a keyword search to select 71 papers has been produced
for screening. Through a screening process targeting papers that describe an
actual KG construction pipeline built from any source, 69 of them have been
selected for examination.

After reviewing about 25% of the collected papers therefore, we have ab-
stracted the following.

T1: URI design The task of constructing an expression pattern for a URI.
T2: URI mapping The task of mapping of a elements type or class to its spe-
cific URI expression pattern.
2 https://data.open.ac.uk/
3 https://www.datacommons.org/
4 https://github.com/tategallery/collection
5 http://neuma.huma-num.fr/
6 https://github.com/DCMLab
7 https://www.go-fair.org/fair-principles/
8 https://www.semantic-web-journal.net/
9 https://www.sciencedirect.com/journal/journal-of-web-semantics
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T3: Prefix mapping The task of mapping of a URI to its prefix appearing in
the final graph.
T4: Type mapping The task of mapping entity types in the sources to the
corresponding target data type of the chosen ontology.
T5: Entity linking The task of mapping of an entity/object in the source to
the corresponding entity in an existing taxonomy/graph.
T6: Entity resolution The task of working out whether multiple object refer-
ences refer to the same object.
T7: Domain ontology selection The task of selecting ontologies that are rel-
evant to the domain.
T8: Ontology feature selection The task of selecting the parts of an ontology
that are descriptively relevant.
T9: Ontology composition The task of assembling together a plurality ontol-
ogy parts into a single domain model.
T10: Ontological requirements specification The task of specifying the on-
tological requirements for representing the underlying sources.
T11: Database interlinking The task of generating triples that link a RDF
database to another RDF database.
T12: Ontology extension The task of extending an ontology via the opera-
tions of subclassing and subtyping.
T13: Schema validation The task of validating that the content of the final
graph conforms to the given schema or ontology.
T14: Content validation The task of validating the semantic content of the
final graph.
T15: Syntax validation The task of validating the syntactic content of the
final graph.
T16: Output graph syntax selection The task of selecting the syntax in
which to express the final Knowledge Graph.
T17: Source to RDF mapping The task of mapping source components
and/or data types to their respective RDF terms. Related to T5.
T18: Language tagging The task of adding language tags to literals.
T19: Links explicitation The task of rendering implicit links in the sources
explicit by constructing appropriate triples (e.g. changing literals into resources).
T20: Subclassing The task of mapping a source class to an ontology class via
rdfs:subClassOf. Related to T12.
T21: Subpropertying The task of mapping a source property to an ontology
property via rdfs:subPropertyOf. Related to T12.
T22: Ontology alignment The task of linking a class or property of the on-
tology to a class and/or property of another ontology via a specific triple.
T23: Internal linking The task of linking unconnected resources in the source
data with one another via a triple.
T24: External linking The task of linking a resource in a RDF dataset to its
representation in an external dataset (i.e. Dbpedia). Related to T5.
T25: Data format modification The task of modifying the format of a piece
of data in the sources to another one in the final graph.
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T26: Data model Transformation The task of mapping RDF data described
in one data model to a different data model.

It must be noted that the literature review is still ongoing and therefore the
below list does not intend to be exhaustive. Once finished, as anticipated in
section 4 above, the next step is to analyse them and systematise them into a
knowledge level model, something that we have however already started doing.
This includes categorising them in terms of thematic groups, identifying which
tasks can be considered "atomic" and which ones can be constructed through a
composition of these "atomic" tasks, determining an initial task distribution be-
tween generative and symbolic methods and aligning the results with established
ones from the field of ontology matching/alignment.

7 Conclusion

In this work I have proceeded to expose my early stage (first year) PhD research
on the yet open problem of theorising and applying the methods and tools of
artificial intelligence to the problem of automating the designing KG generating
pipelines.

To conclude, a brief discussion of some of the challenges that may be faced
is required. A risk with what has been proposed is the possibly vast scale of the
endeavour, the mitigation of which could lead to require some scope narrowing
as we will begin to attempt to move from the knowledge level representation
of our object to the building of its implementation. The early stage nature of
this project also still leaves a number of open questions. A central one that may
affect the final results and related to the assumptions that have been taken is the
extent to which automation can be achieved. That is, how many of the overall
tasks to be performed can be safely allocated to an agent and how many to the
user, either by design or by necessity, cannot be answered at this stage. Providing
an answer to these questions will indeed play a part in the future development
of this PhD project.
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