12 shades of RDF: Impact of Syntaxes on Data Extraction with Language Models

Célian Ringwald ${ }^{1[0000-0002-7302-9037]}$, Fabien Gandon ${ }^{1,2}$ [0000-0003-0543-1232]
Catherine Faron ${ }^{1[0000-0001-5959-5561]}$, Franck Michel ${ }^{1[0000-0001-9064-0463]}$, Hanna Abi Akl ${ }^{1,2}$ [0000-0001-9829-7401]
${ }^{1}$ Université Côte d'Azur, Inria, CNRS, I3S
${ }^{2}$ Data ScienceTech Institute

Abstract

The fine-tuning of generative pre-trained language models (PLMs) on a new task can be impacted by the choice made for representing the inputs and outputs. This article focuses on the linearization process used to structure and represent, as output, facts extracted from text. On a restricted relation extraction (RE) task, we challenged T5 and BART by fine-tuning them on 12 linearizations, including RDF standard syntaxes and variations. Our benchmark covers: the validity of the produced triples, the performance of the model, the training behaviours and the resources needed. We show these PLMs can learn some syntaxes more easily than others, and we identify an efficient "Turtle Light" syntax supporting the quick and robust learning of the RE task.

Keywords: Data extraction • RDF • Linearization • Language Model.

1 Introduction: Targeted Data Properties Extraction

Relation extraction (RE) - the task of retrieving relations from unstructured text - was drastically improved recently by two main changes: (1) the construction of massive corpora aligning texts and facts from Knowledge graphs (KG) e.g. Wikipedia articles with corresponding Wikidata or DBpedia subgraphs, and (2) the usage of pre-trained language models (PLM) to carry out this task.

However, Wikidata and DBpedia still struggle with coverage and quality issues [23|6]. In this context, extracting from Wikipedia the information missing in KGs is an important task. Formally, let $D b \subseteq W \times G$ be a dual base, where W is a set of Wikipedia articles and G a set of corresponding KGs. Our goal is to learn: $E_{D b}: W \times S \rightarrow G ;(t, s) \mapsto g$, where $t \in W$ is an input text, $s \in S$ is a set of SHACL shapes, and g is an RDF graph implied by t and valid against s.

To our knowledge, no LLM-based system currently performs RE directly from Wikipedia articles with a specific RDF syntax. Generative PLMs are very flexible, but variations in prompts and output formats can impact their performances. Hence our research question: How does the choice of a syntax impact the generation of RDF triples using datatype properties? In this paper, we focus on RE for the most common datatype properties of DBpedia resources of type dbo:Person. In this simplified setup, we challenged two encoder-decoder models
trained on twelve RDF syntax flavours. After reviewing the related works (Section 2) we present a method to extract RDF from Wikipedia (Section 3) and the experiments we conducted (Section 4) before discussing the results (Section 5 .

2 Related Works: RDF Extraction with Language Models

Before investing in generative PLMs, the research community focused on systems built on top of encoder-only PLMs (derived from BERT [2]), where relations were decoded by design in a discriminative manner [18]. Since 2021, generative PLMs have gained interest after demonstrating their ability to solve complex tasks in an end-to-end design. The solutions based on pre-trained generative transformer models rely either on encoder-decoder models or on decoder-only ones. (1) Encoder-decoder models traditionally proposed for translation or summarization tasks also demonstrate several successes in QA and RE tasks which were achieved by finetuning BART [12] and T5 models [21]. For RE we can cite: REBEL [7], TALN [19, DEEPstruct [27] or UIE [15]. (2) Decoder-only models have interesting generalization properties but generally work at large scale and need dedicated resources to be adapted to a specific task. Few-shot and zero-shot approaches were studied for these reasons. But few-shot learning does not seem sufficient to solve the relation extraction task [4]. Parameter-efficient fine-tuning (PEFT) approaches [3] allow the adaptation of large models to a specific task but do not necessarily perform as well as fine-tuned models [13.

The use of generative pre-trained models allows us to learn the triple syntax implicitly from the examples submitted during training [28]. The question of the structure of the output was initially referred to as "Answer Engineering" [14, but in the domain of graph extraction, the community refers to it as the "linearization process" i.e. the transformation of a graph structure into a raw sequence of tokens. This allows the usage of a generative model pre-trained on natural language texts [9. Until now, different methods have been investigated but they were not rigorously compared. The two main solutions proposed represent a relation as a list of triples [27]: $((s 1, p 1, o 1),(s 2, p 1, o 2), \ldots)$ or a sequence of tags [11] where each element of the triple is preceded by a special token e.g. H, R, T in $\langle H\rangle s 1\langle R\rangle p 1\langle T\rangle o 1\langle H\rangle s 2\langle R\rangle p 1\langle T\rangle o 2$. 7] and [10] proposed a triple linearization method (subject-collapsed) where triples sharing the same subject are grouped to avoid repetition.

In this article, we will also consider the syntaxes recommended by the W3C to serialize RDF triples, namely, RDF/XML, N-Triples, Turtle, and JSON-LD.

3 Methodological Framework: Definitions and Notations

3.1 Pipeline and Overview of the Approach

Our pipeline is depicted in Figure 1. It takes as input a DBpedia dump ${ }^{3}$. This subset is then filtered to check that the values of the DBpedia triples we target

[^0]are mentioned in the corresponding Wikipedia abstracts (1.1) and comply with a SHACL shape (1.2) (see Section 3.2). The selected triples are then ordered (2.1) and the URIs relating to them are cleaned (2.2). The final dataset is then linearized (3) into 12 syntaxes presented in Section 3.3. The obtained corpora are finally split into 5 independent folds (4). These subsets are used to finetune two models (5) presented in Section 3.4. The fine-tuning configuration of the experiment is described in Section 4 The evaluation (6) is conducted at the end of the training step with the computation of metrics detailed in Section 4.2 .

Fig. 1. Overview of our pipeline: from dataset construction to extraction evaluation

3.2 Dataset and Ground Truth

Our experiment focuses on a simplified relation extraction task to better analyse the impact of the syntax. To avoid any entity linking step related to object properties, we only focused on datatype properties that relate to numbers, string values and dates. This is a good starting point because LLM hallucination generally affects these literal values [8].

We focused on the DBpedia subgraphs describing instances of the DBpedia class dbo:Person and their corresponding Wikipedia abstracts. The instances of this class include the highest number of datatype properties, among which: rdfs:label, dbo:alias, dbo:birthName, dbo:birthDate, dbo:deathDate, dbo:birthYear, dbo:deathYear. Our original set was composed of 1833493 entities and 3249446 related triples, but this is over-scaled compared to our task. Our preliminary trials have shown that a smaller set could be used to learn the graph pattern captured by the defined SHACL shape.

Several works mention the noise caused by the massive alignment of facts with text [24, which also impacts T-Rex or REBEL [13]. More specifically, two problems are pointed out: triple values do not necessarily appear in the text and, conversely, the facts of the text may not have counterpart triples in the knowledge base. To solve the first one, we keep only the triples describing values that could be found in the Wikipedia abstract of a given entity. To answer the second problem, we designed a SHACL shape targeting dbo:Person and specifying which property is mandatory and which is optional, and we kept only the triples valid against this shape. By applying these two pre-processing steps to a random sample of 1000 entities, we found that 80% of the triples contain values that be found in the Wikipedia abstract but that only 45% of the entities have a description graph valid against the shape.

Our pipeline includes two additional pre-processing steps: (1) Triple ordering: [16] demonstrated the importance of having in the first place the triples typing the entity. As RDFlib doesn't ensure this on every syntax, we added an ordering step. (2) URI encoding: the Turtle syntax uses tokens that can be found in URIs (dots and parenthesis) but their usage is forbidden in local names. We had to encode them systematically

3.3 RDF Syntaxes and Alternative Linearizations

Our benchmark covers three types of syntaxes. First we consider the four RDF syntaxes proposed by the W3C: XML-RDF (noted ${ }_{x}$), Turtle (noted T_{T}), NTriples (noted $_{n}$) and JSON-LD (noted ${ }_{j}$). Second, we include the syntaxes proposed in the literature: the List (noted l_{l}) and the Tags syntaxes (noted ${ }_{g}$). Finally, we propose Turtle light, a simplified Turtle syntax where every namespace, prefix, and datatype is considered as already defined (noted t).

We also consider two variations in the syntaxes. The first variation is the triple subject factorisation (noted $_{f}$). This process is naturally integrated into Turtle, JSON-LD and RDF-XML syntaxes. We applied this variation to the Turtle Light syntax, the List and the Tags. A second variation is the single-line writing (noted ${ }_{1}$). To evaluate the impact of the Carriage Return, we consider both a single-line and a multi-line variation of Turtle Light.

An additional variation of RDF serialization that we consider is the use of vocabulary extension (noted $_{v}$). This is a recent common practice, notably used for QA SPARQL query generation related to the extension of the tokenizer vocabulary [1 22 . Adding new tokens to the vocabulary allows us to detach these tokens from the pre-trained embedding space because they relate to another semantic space, e.g. a comma in Turtle vs a comma in a natural language text. For each W3C syntax, we added all the tokens specified in its recommendation.

3.4 Pre-trained Language Models: the Choice of Frugal Sizes

We focused our benchmark on the two encoder-decoder models traditionally used in the literature (see Section 2), BART (noted B) and $T 5$, and we limited our experiment to the "base" size of these models. These two pre-trained models can be seen as small LLMs compared to decoder-only models: today's LLMs count billions of parameters [17], where BART base uses 140M parameters and T5 base 220 M . When comparing BART and T5, they are trained on different datasets and in a different manner. $T 5$ is trained in a second stage on multi-tasks. Each model is given a specific Task Prompt, where $\$$ Abstract is a Wikipedia abstract and \$Syntax the targeted RDF syntax: (1) BART: "\$entity_URI : \$Abstract"; and (2) T5: "Translate English to \$Syntax: [\$entity_URI] \$Abstract"

In the next sections, we use the notations introduced in this section to name each possible configuration. For instance, a BART model trained on Turtle Light syntax, with factorization and multi-lines will be written $B_{t f}$, and a $T 5$ model trained on lists with a vocabulary will be written $T 5_{v l}$.

4 Experimental set-up

4.1 Fine-Tuning Details

Our cod ϵ^{4} is published under an open license and based on a fork of REBEI ${ }^{5}$, which we extended and adapted to our task. For each syntax out of the RDF standards, we developed a specific parser and integrated the metric we present below.

Data Split: 5 independent folds of 1600 distinct examples: 1000 for training, 300 for the evaluation and 300 for testing. Configuration: The BART model was fine-tuned using the inverse square root scheduler with an initial learning rate of 0.00005 . For T5 we used the Adafactor scheduler with an initial learning rate of 0.001 . Both models were fine-tuned with 1000 steps of warmup and configured with an early stop mode with a patience of 5 steps. As the f16 precision used to train BART was not sufficient for T , we used for this model the bf16 mixed precision. Both models were trained on a single GPU, Tesla V100-SXM232GB for BART and NVIDIA A100 80GB PCIe for T5 (able to manage bf16). Management of Tokenization Inconsistencies: As underlined in [25], both $T 5$ and BART tokenizers may duplicate or delete spaces before or after special tokens. For this reason, we controlled the token consistency during the evaluation with a typographic checker and cleaner. This is applied to the learning examples and to the predicted output when both are compared.

4.2 Evaluation Metrics

The first stage of this experiment is to evaluate the ability of the model to produce a given syntax without generating any parsing error. This is measured by the rate of Parsed Triples $R_{P T}$. We also introduce the rate of Correct Subject $R_{C S}$: the choice of the URI for the subject of a generated triple depends on the ability of a model to copy from the input the targeted entity. In addition, we define the rate of SHACL-Validated Triples $R_{S V T}$.
$R_{P T}=\frac{N b_{\text {output parsed }}}{N b_{\text {output generated }}} \quad R_{C S}=\frac{N b_{U R I} \text { found }}{N b_{\text {output parsed }}} \quad R_{S V T}=\frac{N b_{\text {output } V \text { Valid }}}{N b_{\text {output parsed }}}$
Non-parsable triples are evaluated using the Levenstein edit distance $\operatorname{lev}\left(r_{g}, r_{t}\right)$ where r_{g} is the generated RDF code, r_{t} is the one targeted. The result is the number of editions needed to transform r_{g} into r_{t}.

Traditionally, RE focuses on precision (P), recall $(R), F_{1}$ score, or top@k metrics. Following [5, only parsed outputs are evaluated with these metrics and we focus on macro-measures that better capture the imbalanced distribution of properties. These metrics follow the Strict Mode evaluation [26], comparing predicted and ground truth values and verifying their strict equality. The strict evaluation based metrics are not the most appropriate to evaluate datatype

[^1]properties with values of type xsd:String, where we may accept semantically close values. For this reason, we also compute the BLEU score [20] (B): the closer B is to 1 , the greater the similarity between string values.

Regarding the assessment of the training process itself, the fine-tuning process is stopped when the loss is stable but this does not guarantee that the other metrics are stable. Therefore we defined three meta-metrics: (1) the learning velocity V is the number of epochs needed to reach the first saturation (>0.9) of a given metric, e.g. $V_{F_{1}^{+}}$is the number of epochs needed to reach the first saturation when $F_{1}^{+}>0.9 ;(2)$ the stability of the learning process is defined as the ratio of epochs during which a metric gets worse after the first saturation, e.g. for F_{1}^{+}we note the stability $S_{F_{1}^{+}}$; (3) the final divergence of the learning process is defined as the number of folds for which there is a final divergence, e.g. the divergence $D_{F_{1}^{+}}$is the number of folds for which the final F_{1}^{+}is lower than the value of its first saturation.

Finally, we define a global grade G_{g} that will allow us to compare the overall performances of our configurations. It combines the performance of the model in terms of parsability, SHACL validity and subject validity RDF on one side, and in terms of macro F_{1} on the other side: $G_{g}=\overline{R_{P T}} \times \overline{R_{C S}} \times \overline{R_{S V T}} \times \overline{F_{1}^{+}} \times 100$ where, for instance, $\overline{F_{1}^{+}}$is the average of F_{1}^{+}over the folds.

Additionally, we monitored the training time T_{t} (in minutes) and the carbon cost ${ }^{6} C_{c}$ (emissions of CO_{2}-equivalents in kg) for training a model.

5 Results and Discussions: the Best Syntaxes

Table 5 compiles the results for the best-performing configurations and all the details can be found onlin \S^{7}. As the configurations using a vocabulary systematically perform better than the others, we only report these in the table.

Starting with the triple validity metrics, almost every configuration produces triples that could be parsed $\left(\overline{R_{T P}}\right)$; except $T 5$ that struggles to produce Turtle and N-Triples syntaxes.

Considering the $\overline{l e v}$ computed an the triples with syntax errors, we can observe negligible $\overline{l e v}$ distances on $T 5_{v t} / T 5_{v l} / T 5_{v x}$. In these cases, the parsing mainly fails because of forgotten or misplaced tokens that break the syntax (see examples online ${ }^{7}$). But some other configurations $\left(T 5_{v T}, T 5_{v l f}, T 5_{v t 1}, B_{v n}\right.$, $T 5_{v n}$ and $B_{v j}$) produce triples that can be far from the well-formed triples.

Once the results are parsable, they are always valid against the shape $\left(\overline{R_{S V T}}\right)$. The subject URI is also generally easily copied from the prompt by the model, even if we can find some exceptions $\left(T 5_{v g f}\right.$ and $\left.T 5_{v l f}\right)$.

The RE metrics are computed on valid triples, regarding it, the best models have a $\overline{F_{1}^{+}}, \overline{P^{+}}$and $\overline{R^{+}}$close to 0.95 . This is a good result since the macro metrics are generally less optimistic and more informative than the micro ones, where every configuration seems to reach an almost perfect extraction. From

[^2]that point of view, $T 5_{v j}$ is our best result, closely followed by $B_{v g f}, B_{v t f 1}$, $B_{v T}, T 5_{v t f 1}$ and $T 5_{v g f}$. Considering the BLUE score B, we can see that $T 5_{v j}$ is always perfectly predicting string values of datatype properties, and other models generally perform well, except $T 5_{v t l}$.

The training behaviour metrics show that the models generally saturate the F_{1}^{+}beforethe $\overline{V_{R_{T P}}}$, meaning they learn the relation extraction task before they learn to produce syntactically correct triples. Both of these tasks are generally learned early during the training process. Considering the stability ($\overline{S_{R_{T P}}}$), several configurations based on the Turtle light syntax have interesting stability properties, while $T 5_{v T}$ and $T 5_{v n}$ experience difficulties to converge. Finally, considering $D_{F_{1}^{+}}$none of the presented models is diverging; but $T 5_{v T}$ and $T 5_{v n}$ are diverging when considering $D_{R_{T P}}$.

Finally, the resources metrics show important discrepancies between models, that could be explained by the verbosity of some syntaxes, the resources needed for each model and also the ability of the latter to learn a given syntax without divergences. Indeed T5 models are greedier than BART models and simple syntaxes are thriftier than RDF ones. Model training costs vary from 29 grams of CO_{2}, reached by $B_{v t f}$ to 300 grams of CO_{2} emitted by $T_{v x}$.

Globally, BART generally writes syntactically better triples than T5, where T5 needs less training epochs but requires more resources. The factorisation variation has shown a positive impact on the performance of the models, except on $T 5_{v l}$ configurations. On the Turtle Light variations, the one-line option also improves quality but the best configuration seems to be the combination of both factorisation and one-line writing. In the end, $B_{v t f 1}$ offers good performances, at a low cost with a standard and human-readable syntax.

6 Conclusion: a Light Turtle Goes a Long Way

In this article, we evaluated how the choice of a syntax impacts the generation of RDF triples focusing on datatype properties extraction from text. We showed that basic syntaxes (list and tags) are generally easily parsed and lead to average performances. Learning W3C RDF syntaxes is more resource-consuming.

The two best-performing configurations, $T 5_{v j}$ and $B_{v T}$, outperform the others at the cost of 2 hours of training on a basic GPU and 250 g of CO_{2} produced. An interesting compromise is the use of simplified syntaxes, close to standards, robust and quick to learn, in particular inline factorised Turtle Light ($B_{v t f 1}$ and $T_{v t f 1}$). Our experiments also showed the limits of full fine-tuning in some training configurations: $T 5_{v n}$ or $T 5_{v T}$, showing that Turtle and N-Triples may require better-fitted adaptation. Several directions could be explored including the use of a loss or an iterative learning process designed to take into account the syntax and the task, as well as cross-syntax models.

Acknowledgments This work is supported by 3IA Côte d'Azur (ANR-19-P3IA-0002) and UCAJEDI (ANR-15-IDEX-01) and the OPAL infrastructure and Université Côte d'Azur's Center for High-Performance Computing.

 яә.деләл 'рәи!

		¢	
$\begin{array}{\|ll\|} \hline 0 & 0 \\ -i & \dot{\infty} \\ 0 & - \\ 0 & -i \\ 0 & 8 \end{array}$			
	 ¢ ∞ O\|, 		
$\begin{array}{\|cc\|} \hline 0 & 0 \\ 0 & 0 \\ 8 \\ N & 0 \\ N & 0 \\ \hline \end{array}$	 		
$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	$N 100000000000000000000000$ $\bigcirc \\|_{i} 0000000000000000000000$ 000000000000000000000000		
		Q	

References

1. Banerjee, D., Nair, P., Usbeck, R., Biemann, C.: The Role of Output Vocabulary in T2T LMs for SPARQL Semantic Parsing. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Findings of the Association for Computational Linguistics: ACL 2023. pp. 12219-12228. Association for Computational Linguistics, Toronto, Canada (Jul 2023). https://doi.org/10.18653/v1/2023.findings-acl.774, https://aclanthology.org/2023.findings-acl.774
2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). pp. 4171-4186. Association for Computational Linguistics, Minneapolis, Minnesota (Jun 2019). https://doi.org/10.18653/v1/N19-1423 https://aclanthology.org/N19-1423
3. Ding, N., Qin, Y., Yang, G., Wei, F., Yang, Z., Su, Y., Hu, S., Chen, Y., Chan, C.M., Chen, W., Yi, J., Zhao, W., Wang, X., Liu, Z., Zheng, H.T., Chen, J., Liu, Y., Tang, J., Li, J., Sun, M.: Parameter-efficient fine-tuning of large-scale pre-trained language models. Nat Mach Intell 5(3), 220-235 (Mar 2023). https://doi.org/10.1038/s42256-023-00626-4, https://www.nature. com/articles/s42256-023-00626-4, number: 3 Publisher: Nature Publishing Group
4. Han, R., Peng, T., Yang, C., Wang, B., Liu, L., Wan, X.: Is Information Extraction Solved by ChatGPT? An Analysis of Performance, Evaluation Criteria, Robustness and Errors (May 2023). https://doi.org/10.48550/arXiv.2305.14450, http://arxiv.org/abs/2305.14450, arXiv:2305.14450 [cs]
5. Harbecke, D., Chen, Y., Hennig, L., Alt, C.: Why only micro-f1? class weighting of measures for relation classification. In: Shavrina, T., Mikhailov, V., Malykh, V., Artemova, E., Serikov, O., Protasov, V. (eds.) Proceedings of NLP Power! The First Workshop on Efficient Benchmarking in NLP. pp. 32-41. Association for Computational Linguistics, Dublin, Ireland (May 2022). https://doi.org/10.18653/v1/2022.nlppower-1.4, https://aclanthology. org/2022.nlppower-1.4
6. Hofer, M., Obraczka, D., Saeedi, A., Köpcke, H., Rahm, E.: Construction of Knowledge Graphs: State and Challenges (Oct 2023). https://doi.org/10.48550/arXiv.2302.11509, http://arxiv.org/abs/2302.11509, arXiv:2302.11509 [cs]
7. Huguet Cabot, P.L., Navigli, R.: REBEL: Relation Extraction By End-to-end Language generation. In: Moens, M.F., Huang, X., Specia, L., Yih, S.W.t. (eds.) Findings of the Association for Computational Linguistics: EMNLP 2021. pp. 23702381. Association for Computational Linguistics, Punta Cana, Dominican Republic (Nov 2021). https://doi.org/10.18653/v1/2021.findings-emnlp.204 https: //aclanthology.org/2021.findings-emnlp. 204
8. Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y.J., Madotto, A., Fung, P.: Survey of hallucination in natural language generation. ACM Comput. Surv. 55(12) (mar 2023). https://doi.org/10.1145/3571730 https://doi.org/10. 1145/3571730
9. Jin, B., Liu, G., Han, C., Jiang, M., Ji, H., Han, J.: Large Language Models on Graphs: A Comprehensive Survey (Dec 2023), http://arxiv.org/abs/2312. 02783 , arXiv:2312.02783 [cs]
10. Josifoski, M., Sakota, M., Peyrard, M., West, R.: Exploiting asymmetry for synthetic training data generation: SynthIE and the case of information extraction. In: Bouamor, H., Pino, J., Bali, K. (eds.) Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. pp. 1555-1574. Association for Computational Linguistics, Singapore (Dec 2023). https://doi.org/10.18653/v1/2023.emnlp-main.96, https://aclanthology. org/2023.emnlp-main. 96
11. Ke, P., Ji, H., Ran, Y., Cui, X., Wang, L., Song, L., Zhu, X., Huang, M.: JointGT: Graph-text joint representation learning for text generation from knowledge graphs. In: Zong, C., Xia, F., Li, W., Navigli, R. (eds.) Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. pp. 2526-2538. Association for Computational Linguistics, Online (Aug 2021). https://doi.org/10.18653/v1/2021.findings-acl.223, https://aclanthology.org/ 2021.findings-acl. 223
12. Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., Zettlemoyer, L.: BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension (Oct 2019). https://doi.org/10.48550/arXiv.1910.13461, http://arxiv.org/abs/1910.13461 arXiv:1910.13461 [cs, stat]
13. Li, X., Polat, F., Groth, P.: Do Instruction-tuned Large Language Models Help with Relation Extraction?
14. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM Comput. Surv. 55(9) (jan 2023). https://doi.org/10.1145/3560815 https: //doi.org/10.1145/3560815
15. Lu, Y., Liu, Q., Dai, D., Xiao, X., Lin, H., Han, X., Sun, L., Wu, H.: Unified structure generation for universal information extraction. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). pp. 5755-5772. Association for Computational Linguistics, Dublin, Ireland (May 2022). https://doi.org/10.18653/v1/2022.acl-long.395 https:// aclanthology.org/2022.acl-long. 395
16. Mihindukulasooriya, N., Sava, M., Rossiello, G., Chowdhury, M.F.M., Yachbes, I., Gidh, A., Duckwitz, J., Nisar, K., Santos, M., Gliozzo, A.: Knowledge graph induction enabling recommending and trend analysis: A corporate research community use case. In: The Semantic Web - ISWC 2022: 21st International Semantic Web Conference, Virtual Event, October 23-27, 2022, Proceedings. p. 827-844. Springer-Verlag, Berlin, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19433-7_47, https://doi.org/10.1007/978-3-031-19433-7_47
17. Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., Gao, J.: Large language models: A survey (2024)
18. Nayak, T., Majumder, N., Goyal, P., Poria, S.: Deep neural approaches to relation triplets extraction: a comprehensive survey. Cognitive Computation 13, 1215 1232 (2021), https://api.semanticscholar.org/CorpusID:232427782
19. Paolini, G., Athiwaratkun, B., Krone, J., Ma, J., Achille, A., Anubhai, R., dos Santos, C.N., Xiang, B., Soatto, S.: Structured prediction as translation between augmented natural languages. In: 9th International Conference on Learning Representations, ICLR 2021 (2021)
20. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Isabelle, P., Charniak, E., Lin, D. (eds.)

Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. pp. 311-318. Association for Computational Linguistics, Philadelphia, Pennsylvania, USA (Jul 2002). https://doi.org/10.3115/1073083.1073135, https: //aclanthology.org/P02-1040
21. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P.J.: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (Sep 2023), http://arxiv.org/abs/1910.10683, arXiv:1910.10683 [cs, stat]
22. Reyd, S., Zouaq, A.: Assessing the generalization capabilities of neural machine translation models for SPARQL query generation. In: Payne, T.R., Presutti, V., Qi, G., Poveda-Villalón, M., Stoilos, G., Hollink, L., Kaoudi, Z., Cheng, G., Li, J. (eds.) The Semantic Web - ISWC 2023 - 22nd International Semantic Web Conference, Athens, Greece, November 6-10, 2023, Proceedings, Part I. Lecture Notes in Computer Science, vol. 14265, pp. 484501. Springer (2023). https://doi.org/10.1007/978-3-031-47240-4_26, https:// doi.org/10.1007/978-3-031-47240-4_26
23. Shenoy, K., Ilievski, F., Garijo, D., Schwabe, D., Szekely, P.: A study of the quality of Wikidata. Journal of Web Semantics 72, 100679 (Apr 2022). https://doi.org/10.1016/j.websem.2021.100679 https://www.sciencedirect. com/science/article/pii/S1570826821000536
24. Smirnova, A., Cudré-Mauroux, P.: Relation extraction using distant supervision: A survey. ACM Comput. Surv. 51(5) (nov 2018). https://doi.org/10.1145/3241741. https://doi.org/10.1145/3241741
25. Sun, K., Qi, P., Zhang, Y., Liu, L., Wang, W.Y., Huang, Z.: Tokenization Consistency Matters for Generative Models on Extractive NLP Tasks (Oct 2023). https://doi.org/10.48550/arXiv.2212.09912, http://arxiv.org/abs/2212.09912, arXiv:2212.09912 [cs]
26. Taillé, B., Guigue, V., Scoutheeten, G., Gallinari, P.: Let's Stop Incorrect Comparisons in End-to-end Relation Extraction! In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). pp. 3689-3701. Association for Computational Linguistics, Online (Nov 2020). https://doi.org/10.18653/v1/2020.emnlpmain.301, https://aclanthology.org/2020.emnlp-main. 301
27. Wang, C., Liu, X., Chen, Z., Hong, H., Tang, J., Song, D.: DeepStruct: Pretraining of language models for structure prediction. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Findings of the Association for Computational Linguistics: ACL 2022. pp. 803-823. Association for Computational Linguistics, Dublin, Ireland (May 2022). https://doi.org/10.18653/v1/2022.findings-acl.67, https://aclanthology. org/2022.findings-acl. 67
28. Ye, H., Zhang, N., Chen, H., Chen, H.: Generative knowledge graph construction: A review. CoRR abs/2210.12714 (2022). https://doi.org/10.48550/arXiv.2210.12714, https://doi.org/10.48550/arXiv. 2210.12714

[^0]: 3 https://databus.dbpedia.org/dbpedia/collections/dbpedia-snapshot-2022-09

[^1]: 4 https://github.com/datalogism/12ShadesOfRDFSyntax
 5 https://github.com/Babelscape/rebel

[^2]: ${ }^{6}$ https://codecarbon.io/
 7 https://wandb.ai/celian-ringwald/12ShadesOfRDF

