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Abstract. As part of knowledge engineering workflows, semantic ar-
tifacts, such as ontologies, knowledge graphs or semantic descriptions
based on industrial standards, are often validated in terms of their com-
pliance with requirements expressed in natural language (e.g., ontology
competency questions, standard specifications). Key to this process is
the translation of the requirements in machine-actionable queries (e.g.,
SPARQL) that can automate the validation process. This manual trans-
lation process is time-consuming, error-prone and challenging, especially
in areas where domain experts might lack knowledge of semantic tech-
nologies. In this paper, we propose a Large Language Models (LLMs)
based approach to translate requirements texts into SPARQL queries and
test it in validation use cases related to SAREF and OPC UA Robotics.
F1 scores of 88-100% indicate the feasibility of the approach and its po-
tential impact on ensuring high quality semantic artifacts and further
uptake of the semantic technologies (industrial) domains.
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1 Introduction

Knowledge Engineering (KE) aims to elicit, capture, conceptualise and formalise
knowledge in the form of semantic artifacts that support information systems, in
particular in the area of Artificial Intelligence. A semantic artifact is a "machine-
actionable formalisation of a conceptualisation, enabling sharing and reuse by
humans and machines" [1]. Examples of such artifacts range from taxonomies
and thesauri, to ontologies and knowledge graphs.

Ensuring the quality of a semantic artifact is often achieved by validating
that it complies with certain requirements. For example, in ontology engineering,
ontologies are validated against competency questions or requirements elicited
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when building (or reusing already existing) ontologies [2]. We represent this pro-
cess graphically in Fig. 1a: given a set of competency questions or requirements
expressed in natural language, a semantic artifact is built (or selected for reuse).
The validation of the semantic resource happens by translating the requirements
from natural language to a machine-actionable language such as SPARQL (or
SHACL) and applying these to the artifacts. Validation fails when the queries
return no answer, as the information expressed by the requirements could not
be found in the semantic artifact.

Fig. 1. Validation of semantic artifacts: (a) traditional approach; (b) with LLMs.

Interestingly, this pattern of validating semantic artifacts through the for-
malisation of requirements can also be found more broadly in communities that
adopt semantic technologies [3]. This is the case with industrial standards such as
ISA, IEC, OPC UA, etc., which provide standardized semantics for the industry
automation field [4]. These standards provide the specification of their semantics
in textual documents (e.g., in PDF format). Their adopters create information
artifacts (e.g., descriptions of devices e.g., in XML format) in compliance with
the standard’s rules to ensure interoperability and integration in their domain.
To benefit from formal and machine-actionable semantics in terms of automated
query and reasoning capabilities, several of these standards are aligned to the
Semantic Web (SW) technology stack [5, 6, 7, 8]. As a result, standard adopters
create semantic artifacts (expressed in RDF), which need to comply with the
textual requirements expressed in the standard specification (aka compliance
rules). Compliance is checked by validating these industrial semantic artifacts
through formal queries derived from the standard specification.

The key challenge in all these validation settings is that translating textual
requirements into formal queries manually is time consuming, tedious and error-
prone [9]. In industrial settings, this is exacerbated by scale (e.g., OPC UA alone
has about 140 specification documents each containing 30-100 textual compli-
ance rules) and reduced expertise with semantic technologies [10]. LLMs such as
GPT-3, have shown a versatile applicability for performing language processing
tasks [11]. While their use to address KE tasks is being investigated [12, 13, 14],
there is, so far limited focus on semantic artifact validation.

To fill this gap, we investigate how to automatically generate SPARQL
queries from textual requirements using LLMs (Fig.1b) as a key enabler for
semantic artifact validation. We describe our methodology for devising suitable
prompts and experimentally investigate the feasibility of this approach in two
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uses cases: (i) the open source Smart Applications REFerence (SAREF) ontol-
ogy [15] and (ii) an OPC UA Robotics ontology derived from OPC UA Robotics
nodeset file5 using the formal mapping to RDF defined in [7]. The experimental
data and the source code are publicly available [16]. Results of F1 score ranging
between 88-100% demonstrate the feasibility of the approach.

An overview of related work (Sect. 2), is followed by the description of our
methodology (Sect. 3), its adaptation to the two use cases and the experiments
conducted (Sect. 4). We close with lessons learned and conclusions (Sect. 5).

2 Related Work

The support of LLMs for KE has attracted much research interest in recent
years. Allen et al. [14] highlights two possible uses of LLMs for KE: (i) LLM as a
component in a hybrid neuro-symbolic system to support the KE process, and (ii)
LLM as a stand-alone approach to KE. Further, they emphasize the capability of
LLM as a general-purpose technology to transform natural language into formal
language. Meyer et al. [17] elaborate their experiments on potential application
areas where LLMs can assist with Knowledge Graph (KG) engineering.

However, much of these recent works are focused on KG construction and
completion, marked with the availability of benchmarks (e.g., Text2KGBench
[18]) and challenges (e.g., LLM-KBC6). In contrast, support for other KE tasks,
including the validation of semantic artefacts, is limited or only reported as part
of a larger process. The identification of incorrect KG triples has been briefly
discussed in [19] as part of a KG generation process. Meyer et al. conducted
experiments with SPARQL query generation where their initial results show
that the standard prompt engineering is not sufficient [17]. Therefore, there is
a need for a methodology to support validation of semantic artefacts, including
generating SPARQL queries from textual requirements.

3 Proposed Methodology

LLMs are pre-trained models on billions or trillions of parameters [20]. Therefore,
in general, they can generate SPARQL queries from natural language sentences
and questions, in other words, Natural Language Query (NLQ). The generated
queries are syntactically correct. However, in most cases they may not be se-
mantically correct as they still lack the context and instructions to generate the
queries desired by the user [17]. In this work, we developed a methodology to
improve the syntactic and semantic correctness of SPARQL queries generated
from LLMs. We mainly use prompt engineering, which means giving knowl-
edge required by an LLM (e.g., in the form of additional context such as text

5 https://github.com/OPCFoundation/UA-Nodeset/blob/latest/Robotics/Opc.
Ua.Robotics.NodeSet2.xml

6 https://lm-kbc.github.io/challenge2023/
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documents, excel sheets, knowledge graphs, etc.) and giving it instructions or
guidelines in the form of natural language text to perform the task a user wants.

There are several ways to provide instructions to LLMs [21]. Our methodol-
ogy relies on prompt engineering with zero-shot learning and has three steps:

– Step 1: Schema preparation: provides context/schema to the LLM such as
the semantic artifact, based on which the queries should be generated;

– Step 2: Instruction template adaptation: a list of instructions for the LLM is
created by adaptation of an instruction template, and

– Step 3: LLM configuration towards optimal and consistent results.

The development of this methodology was an iterative process that involved
performing multiple experiments on LLMs for SPARQL query generation. At ev-
ery iteration, we extended the context and fine-tuned the instructions to the LLM
to improve the correctness and accuracy of the generated SPARQL query. As
part of our methodology, we developed a prompt template for the SPARQL query
generation (cf. Listing 1.1). The prompt template contains three placeholders:
SCHEMA of the semantic artefacts (for Step 1), Domain-Specific-Instructions
(for Step 2), and NLQ to be translated into SPARQL.

Listing 1.1. Prompt template for SPARQL query generation using LLMs

By using this ontology:
{SCHEMA}
Instructions:
1. First, generate the paths and relations.
2. Then generate SPARQL query using those paths and relations.
3. Define all the necessary prefixes fully and use only those prefixes in

the query.
4. Use precise prefixes while generating a SPARQL query; do not give

multiple options for prefixes in the query.
5. Do not use ‘/’ or ‘\textbackslash’ inside the WHERE clause; define the

full path in prefix.
6. Do not include any explanations or apologies in your responses.
7. Do not respond to any questions that ask for anything else than for

you to construct a SPARQL query.
8. Do not include any text except the SPARQL query generated.
{Domain-Specific-Instructions}
{NLQ}

3.1 Step 1: Schema Preparation

The schema part of the prompt is the semantic artifact. Should the artifact
contain ontologies with complex (OWL) axioms, this leads to challenges for the
LLM. Therefore, a pre-processing step is required to simplify the OWL axioms
and present them as simple triples prior to being used by the LLM. In this case,
there is a token limit for the schema. In our case, we used OpenAI’s GPT-4
[11] LLM engine where the token size limit is 8192 tokens. In contrast to this
approach, the schema can be given to an LLM by uploading documents. In this
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way, the token limit can be further extended. However, when the size of the
schema is larger, it should be divided into chunks and it should be kept in a
vector database. Moreover, appropriate chunks should be given to the LLM for
query generation, however, this is a part of our future work.

3.2 Step 2: Instruction Template Adaptation

Listing 1.1 shows a prompt template containing the list of instructions provided
to an LLM for query generation. The instruction part is divided into two sections.

General instructions (instructions 1-8): are domain agnostic and can
be used to generate SPARQL queries in any domain. They were enriched in
an iterative way through experiments. Therefore, this list is not complete, but
rather a baseline to be further extended. The instructions have these roles:

– Instructions 1-2 define the main goal of the prompt, i.e., query generation.
In the case of semantic artifacts with complex query paths between enti-
ties with multiple levels, it is challenging for an LLM to generate the paths
and relations between entities correctly. Therefore, these first two instruc-
tions ensure that the LLM first summarizes the paths and relations between
entities before using them in SPARQL queries. This leads to better results.

– Instruction 3-5 instruct on how the prefixes should be defined and used in
the generated query to provide accurate results.

– Instructions 6-8 request that only a SPARQL query is returned so that it
can be executed on a triple store without further processing.

Listing 1.2. An example of domain-specific instructions for OPC UA domain

9. Use ‘hasProperty’ relation while generating the SPARQL query to get to
a variable node.

10. Use ‘hasComponent’ relation while generating the SPARQL query to get
to an object node.

11. Subjects and objects are entities in a generated SPARQL query, so
they should always start with a capital letter.

Domain specific instructions: the LLM requires domain specific instruc-
tions to generate accurate queries for domain specific use cases. In our experi-
ments, we mainly focused on generating the SPARQL queries OPC UA where
the structure of information models is complex. Therefore, we also might need
to provide domain specific instructions such as in Listing 1.2. In OPC UA there
are mainly two types of relations between entities: "hasComponent" (refers from
an Object node to another Object node) and "hasProperty" (refers from an Ob-
ject node to a variable node). We observed that the LLM could not use these
relationships correctly to generate SPARQL queries before being explicitly in-
structed on how to make use of these domain specific information (instructions
9-11). A general lesson learned from our experiments is that, when complex do-
main knowledge is present in the use cases, additional instructions need to be
provided that ensure a correct interpretation of this knowledge.
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3.3 Step 3: LLM Configuration

Besides making use of a prompt template, it is crucial to configure the LLM
appropriately for each use case. For query generation purposes, the LLM needs
to be accurate rather than creative, i.e., deterministic in its answers. Therefore,
the temperature of the LLM for this use case should be set to zero in order to
enable producing consistent results across several executions. In this project, we
used Azure OpenAI Service with GPT 4.0 Engine.

4 Experimental Evaluation

The aim of these experiments is to evaluate the quality of SPARQL queries
produced using LLM. To this end, we evaluated our method in the following
two use cases according to the evaluation strategy described in Section 4.1. The
result of the evaluation is reported in Section 4.2.

Use Case 1 (UC1): Validation with Compliance Rules. In our prior work, we
described the process of extracting compliance rules from OPC UA companion
specifications [9]. These compliance rules fulfill a similar role to competency ques-
tions as they describe the requirements to comply with an OPC UA companion
specification. The information model of an OPC UA companion specification can
be converted from XML into an OWL ontology and subsequently can be queried
with SPARQL queries [7]. To convert these textual compliance rules to SPARQL
queries the LLM-based semantic artifact validation method can be used.

In UC1, we chose the OPC UA Robotics companion specification and its
information model for our evaluation. Robotics information model describes the
components of a robot and how they should interact and communicate with each
other. The compliance rules, to comply with the information model are explicitly
and implicitly stated in the text and tables in the specification document. We
extracted 25 compliance rules in textual form. The related template file and
compliance rules can be found in [16].

Use Case 2 (UC2): Validation with Competency Questions. Competency Ques-
tions represent the requirements of ontologies [22] and can be used to ensure
the capability of an ontology in answering them. The competency questions are
normally formulated in natural language and have to be converted into SPARQL
queries to validate the ontology. Therefore this use case can also be addressed
with the methodology presented in this paper.

For our evaluation purpose, we chose the SAREF ontology for UC2 since
it covers similar domains as OPC UA with its companion specifications but is
less complex than OPC UA. To this end, we instantiated data and developed
a set of 15 competency questions related to the TemperatureSensor concept in
SAREF Core. The related template file, competency questions list, and end-to-
end implementation are located in [16].
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4.1 Evaluation Strategy

First, for both use cases, the NLQs and their expected, corresponding SPARQL
query outputs were established as ground truth. Then the NLQ and the se-
mantic artifacts were provided to the LLM-based semantic artifact validation
system. The received <SPARQL;result> pairs, were then compared with the
ground truth. Differing results were marked as False and matching results were
evaluated with SPARQL and ontology experts. Following this, results matching
the expectation were labelled as True, and finally, all results were evaluated in
terms of precision, recall, and F1 score.

Furthermore, there are two different ways of using GPT 4.0 in our evaluation
context: GPT Web UI and APIs. The first method involved running each sen-
tence through the Azure-based GPT 4.0 Web UI, with prepared prompts using
a consistent template populated with the ontology and the question. The second
method was to execute the same NLQs through GPT 4.0 API Calls. We tested
each use case with both methods and evaluated the results.

4.2 Experimental Results

We evaluated the LLM-based semantic artifact validation methodology on both
SAREF and OPC UA robotics following the evaluation design explained above.

The OPC UA Robotics KG was evaluated with 25 compliance rules per-
taining to validation. Out of the compliance rules, 13 correspond to a valid
implementation on the knowledge graph, while there is no implementation for
12 of them on the relevant knowledge graph.

Table 1. Semantic Artifact Validation Results over Compliance Rules for OPC UA
Robotics

Source & Sending Method Number of NLQ Type of NLQ Precision Recall F1 score

Robotics (over Azure Web UI) 25 (13/12) Compl. Rules .88 .88 .88
Robotics (over Azure API) 25 (13/12) Compl. Rules .88 .88 .88

Robotics* (whole experiment) 50 (26/24) Compl. Rules .88 .88 .88

Similarly, 15 competency questions for validating the SAREF KG were used.
Among these, 10 were identified as valid questions, while 5 were not as shown
in Table 2. Although everything remained consistent in terms of sentences, tem-
plate, ontology, the LLM engine, and configurations, minor discrepancies are
noticed between the Web UI results and API Call results.

4.3 Discussion

The main lessons we learned during our work include:

– Verified prompt templates play a crucial role. The main challenge of our work
was optimizing the prompt template, as even small changes to the template
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Table 2. Semantic Artifact Validation Results over Competency Questions for SAREF

Source & Sending Method Number of NLQ Type of NLQ Precision Recall F1 score

SAREF (over ChatGPT UI) 15 (10/5) Competency Q. 1.00 1.00 1.00
SAREF (over ChatGPT API) 15 (10/5) Competency Q. 0.92 0.95 0.93

SAREF* (whole experiment) 30 (20/10) Competency Q. 0.95 0.97 0.96

showed deviation in the results. Templates that worked for some sentences
in the dataset, may not work for other sentences. Therefore, we optimized
the template iteratively to derive the template in Listing 1.1, which was
successfully applied for all the sentences in our datasets. Consistently using
this template lead to improved quality and accuracy of the generated queries,
and is one of the key reusable results of our work.

– In-depth domain and modeling semantics are challenging for LLMs. The
modeling semantics of OWL axioms and the domain knowledge necided in
the OPC UA relations could only be processed in our workflow when these
semantic structures were rewritten and presented in a simplified manner.

– Execution modality impacts on results. The query generation experiments
were conducted using API and web-page based execution modalities
(Sect. 4.1 ). In general, the results were better on the Web UI. Identify-
ing the reason for this still requires deeper investigation.

– The complexity of the semantic artifact negatively impacts the results’ qual-
ity. The macro average F1 score results for UC1 are 88% across all experi-
ments (Table 1). Moreover, 100% F1 score result was achieved through Web
UI, but this fell to 93% when using the API call (Table2). The overall av-
erage result for UC2 is 96%. OPC UA Robotics had a more complex NLQ
and semantic artifacts and achieved a lower score.

5 Conclusion and Future Work

We proposed a methodology to support semantic artifact validation task with
LLMs. We evaluated our approach with two different semantic artifacts from the
industry domain and open source artifacts. We investigated how we could use
textual requirements, such as competency questions and compliance rules, for
the task. Consequently, we generated SPARQL queries through LLM and did
this using two different methods including ChatGPT Web UI and API Calls.
The results ranged between 88% and 100% in terms of F1 score, which can
be considered promising for the future. Furthermore, throughout this study, we
had the opportunity to conduct numerous experiments and observations. We
expressed how important prompt engineering is in the new era of LLM usage for
KE, especially on semantic artifact validation, and its challenges.

In the future, we plan to develop and evaluate our approach for scalability
and robustness within the industry domain and beyond. Furthermore, we plan
to continue our research on LLMs for other KE tasks in the industry domain.
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