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Abstract. Column property annotation (CPA), also known as column
relationship prediction, is the task of predicting the semantic relationship
between two columns in a table given a set of candidate relationships.
CPA annotations are used in downstream tasks such as data search,
data integration, or knowledge graph enrichment. This paper is the first
to explore the usage of large language models (LLMs) for the CPA task.
We experiment with different zero-shot prompts for the CPA task which
we evaluate using two OpenAI models (GPT-3.5, GPT-4) and the open-
source model SOLAR.We find GPT-3.5 to be quite sensitive to variations
of the prompt, while GPT-4 reaches a high performance independent
of the variation of the prompt. We further explore the scenario where
training data for the CPA task is available and can be used for select-
ing demonstrations or fine-tuning the model. We show that a fine-tuned
GPT-3.5 model outperforms a RoBERTa model that was fine-tuned on
the same data by 11% in F1. Comparing in-context learning via demon-
strations and fine-tuning shows that the fine-tuned GPT-3.5 performs
9% F1 better than the same model given demonstrations. The fine-tuned
GPT-3.5 model also outperforms zero-shot GPT-4 by around 2% F1 for
the dataset on which is was fine-tuned, while not generalizing that good
to other CPA datasets.

Keywords: Table Annotation · Large Language Models · Column Prop-
erty Annotation.

1 Introduction

Table annotation is the task of annotating elements of a table using pre-defined
vocabularies in order to discover their semantics [14]. It consists of several sub-
tasks that aim at discovering the semantics of different elements of the table.
Two of the sub-tasks are column property annotation (CPA) which focuses on
discovering the semantic relationship between two columns, and column type
annotation (CTA) which aims at discovering the semantic types of entities con-
tained in a column. An example of both tasks is presented in Figure 1. The
example table contains book entities, the names of which are contained in the
first column and some of its attributes are contained in the other three columns.
The goal of a CTA system is to discover the types of each column separately, for
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example the last column contains dates therefore the CTA label assigned to this
column by the system would be “Date”. On the other hand, the goal of a CPA
system is to annotate the relationship of the columns with the first column of the
table, also referred to as the subject column [21]. As the last column contains
the dates of publishing of the book entities listed in the first column, a CPA
system would annotate this relationship with the label “datePublished”.

Fig. 1. Example of CTA and CPA labels. CTA labels are shown on top of the table
columns, while CPA labels are shown below the table.

Early statistical approaches [12, 21] use a maximum likelihood or maximize
joint probabilities to assign CTA and CPA labels to columns or pair of columns.
Later systems [7, 15, 16] use a Knowledge Base (KB) such as DBpedia [1] to first
match the entities in columns to entities in the KB and consider the KB class of
the entity as its column type while considering the KB properties of the entities
as potential CPA labels. Cannaviccio et al. [2] use a combination of language
modeling and using a KB. They train a language model on a Web corpus to help
in re-ranking the candidate KB properties that can be used to classify the rela-
tionships between the columns. Pre-trained language model-based methods use
a pre-trained language model (PLM) such as BERT [4] and fall into two groups
of approaches: methods that learn tabular embeddings such as TURL [3] where
the authors propose an architecture that learns cell representations that can be
used for predicting CTA and CPA labels, or works that fine-tune PLMs such as
the state-of-the-art DODUO [19] which experiments with table serialization and
a multi-task learning architecture for the CTA and CPA task.

With the advancements in large language models (LLMs) and the release of
ChatGPT [17] and LLaMa-2 [20] models, research has started to explore prompt
designs for table tasks as well as fine-tuning these models on table tasks. In [9],
prompt designs on the CTA task are explored, where adding instructions to the
prompt for the GPT-3.5 model gave the model some reasoning directions and
boosted its performance on the task. In this work, we also test instruction-based
prompt designs on the task of CPA. In Chorus [8], different table tasks are ex-
plored, including CTA. The authors test instructions in their prompts as well and
introduce the concept of anchoring to remap to the original label space the an-
swers generated by the model that are not part of the label space. ArcheType [5]
fine-tunes a LLaMa-7B model on the CTA task and compares its results to two



Column Property Annotation using Large Language Models 3

PLM baselines. Table-GPT [11] fine-tunes the text-davinci-002 GPT-3.5 model
using a combination of unsupervised table tasks such as row/column filtering,
row/column sorting as well as supervised table tasks such as schema match-
ing and entity matching. They show that their fine-tuned model generalizes to
other unseen tasks. In our work, we also fine-tune a GPT-3.5 model, gpt-3.5-
0613, on singular tasks CTA and CPA as well as their combination to test if
fine-tuning on both tasks simultaneously provides a better generalization ability
than fine-tuning on the tasks separately. In TableLlama [23] a LLaMa-7B model
is fine-tuned on 6 table tasks two of which are CTA and CPA and the resulting
model is evaluated on seen and unseen tasks. Some initial steps towards the
exploration of the CPA task using LLMs are taken in TableLlama, however the
zero-shot scenario still remains unexplored. We aim to fill this gap in this paper.
The main contributions of this paper are:

1. We are the first to explore prompt designs for the CPA task in a zero-shot
and few-shot setting in contrast to existing work which explore fine-tuning
LLMs for this task amongst other tasks.

2. Using different zero-shot prompt designs, we analyze the performance and
prompt sensitivity of GPT-3.5, GPT-4, and SOLAR-70B for the CPA task.

3. Existing research has only fine-tuned for the CPA task as one task amongst
others in a multi-task learning setting. In contrast, we explore the effect of
fine-tuning gpt-3.5-0613 exclusively for the CPA task and explore how the
fine-tuned model generalizes to other datasets as well as to the CTA task.

2 Experimental Setup

This section introduces our experimental setup. We make the code and data
available on GitHub1 so that all our experiments can be replicated.

Datasets. We use two datasets for the experiments on the CPA task. The
first dataset is SOTAB V2 CPA [10] which consists of tables whose topics range
across 17 domains, including books, products, local businesses etc. Its test set
consists of 595 tables with 2,340 columns annotated using 108 Schema.org2 terms
which are manually verified. The second dataset is the T2Dv2 CPA dataset. The
dataset was originally published by Ritze et al. [18] and we use the manually
verified version3, the test set of which consists of 80 tables from domains such as
animals, book, country etc. labeled using 48 terms from the DBpedia properties.

Additionally, for the fine-tuning experiments we use two more datasets for the
evaluation of the CTA task. SOTAB V2 CTA [10] consists of tables with topics
ranging over 17 domains including movies, music albums, events etc. Its test
set consists of 609 tables where 1851 columns are labeled using 82 Schema.org
terms and the annotation is manually verified. Lastly, we build the T2Dv2 CTA
dataset by using T2Dv2 CPA’s tables where we map the DBpedia properties to

1 https://github.com/wbsg-uni-mannheim/TabAnnGPT
2 https://schema.org/
3 https://webdatacommons.org/structureddata/smb/
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DBpedia classes to generate the CTA labels. Statistics about all datasets used
can be found in Table 1. For training in our experiments, we do not use the
original large training sets for SOTAB V2 CTA and CPA, but we use sampled
train sets to explore the scenario where less training data is available.

Table 1. Statistics of datasets used.

Dataset
Original Train Sampled Train Test

Labels
Tables Columns Tables Columns Tables Columns

SOTAB V2 CTA 44,769 116,887 1199 1640 609 1,851 82
T2Dv2 CTA 74 146 - - 71 145 16
SOTAB V2 CPA 29,158 109,994 1264 2160 565 2,340 108
T2Dv2 CPA 81 170 - - 82 166 48

Language models. The LLMs that we test are two of OpenAI’s GPT
models4, gpt-3.5-turbo-0125 and gpt-4-0125-preview and one open-source model
SOLAR-70B5, which is a LLaMa-2-70B [20] fine-tuned model. In our experi-
ments, we will refer to these models as GPT-3.5, GPT-4 and SOLAR respec-
tively. To build our prompt templates and to access OpenAI’s models we use
the Langchain6 library, while for using the open-source model we use the Hug-
gingface transformers7 library. In order to make our experiments reproducible,
we set the temperature of the models to 0.

Evaluation Setup. For all the selected data we use a multi-class classi-
fication setup, and following previous work we report Micro-F1 as evaluation
metric due to the imbalance that exists in the different classes that are present
in the datasets. For the answers that the model generates that cannot be directly
mapped to the label set, we consider them as errors and we do not re-map them
to our label space. We refer to these answers as OOV (out of vocabulary).

3 Comparison of Zero-shot Prompts

We start designing the CPA prompts by distinguishing three main parts in the
prompts: task description, instructions, and classification sentence. The task
description part aims at describing the CPA task to the model. In the instructions
part we aim at writing some simple instructions that can help the model follow
the CPA tasks’ steps and inform the model of a preferred format for generating
its answer. In the last part, we test how classification words can influence the
answer of the model. Two example prompts are shown in Figure 2. The prompt
on the left contains as its first message a formulation of the task part where
we only describe the CPA task without mentioning the name of the task. It is

4 https://platform.openai.com/docs/models
5 https://huggingface.co/upstage/SOLAR-0-70b-16bit
6 https://www.langchain.com/
7 https://github.com/huggingface/transformers
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followed by a five-step instructions part where we inform the model that the
input is a table and the answer should be returned in a required format. In the
final message we ask the model to classify the table columns and pass the first
five rows of a table in a markdown format. If in the first five rows some missing
values are present, we fill the cells using values from the rest of the rows. The
prompt on the right contains in the first message a task formulation where the
cpa task is mentioned and explained. It is followed by a second message that
contains less instructions than the prompt on the left, where we have removed
the first two steps. Finally in its last message we test the keyword annotate to
ask the model to return the labels for the CPA task. For the last message, we
also test the words determine and classification of relationships.

Fig. 2. Example of two prompt designs.

Results. Table 2 reports the results for prompting the models with each
combination of the three building blocks described in the above paragraph. In
the cases where cpa is not mentioned the describe task description is used. The
results show that including the definition of the CPA task into the prompt does
not help the GPT-3.5 model. This can be seen from the combinations of the
cpa prompt which are all below the score of 61%. In opposite, SOLAR seems to
benefit from including the task name and achieves the highest score in this case.
Considering the instructions, including more or less instructions seems to not
have much effect as the gap between using instructions and less-instructions is
small, and the results seem to be influenced more by the classification message.
We can observe, mostly from the results of T2Dv2, that simply changing the
wording in the classification message ranges the Micro-F1 score by up to 13%
when comparing the classify and the relationships keyword. In SOTAB V2,
this gap ranges from 2-4% for GPT-3.5. Regarding SOLAR, for both datasets
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Table 2. Micro-F1 zero-shot CPA prompt designs results.

Prompt
SOTAB V2 CPA T2Dv2 CPA

GPT-3.5 GPT-4 SOLAR GPT-3.5 GPT-4 SOLAR

instr-classify 64.99 80.31 49.56 56.64 80.36 75.23
cpa-instr-classify 60.14 80.38 53.59 52.55 79.76 69.72
instr-annotate 66.06 79.88 50.56 65.08 80.00 77.30
instr-determine 64.76 80.19 50.25 64.43 82.35 77.68
instr-relationships 66.42 79.30 50.58 73.12 81.48 72.56
less-instr-classify 62.86 80.19 52.57 60.50 78.55 76.83
less-instr-annotate 65.67 79.78 52.61 62.33 81.57 75.38
less-instr-determine 64.82 79.51 52.02 56.34 81.48 73.94
less-instr-relationships 66.49 80.07 52.13 73.58 79.76 71.60
cpa-less-instr-classify 56.73 81.36 53.60 50.56 80.86 78.29

Prompt sensitivity 3.95 0.64 1.30 7.49 1.06 2.60

we can observe a slightly higher score when the cpa task formulation is used in
combination with less instructions. Overall, the results show a prompt sensitivity
of 3.95 and 7.49 in the case of GPT-3.5, while when looking at the results of
SOLAR and GPT-4, we notice a lower sensitivity to the different formulations,
especially for GPT-4 which is the most stable model amongst the three.

Table 3. Few-shot results using two methods for selecting demonstrations.

Method shots
SOTAB V2 CPA T2Dv2 CPA

GPT-3.5 GPT-4 SOLAR GPT-3.5 GPT-4 SOLAR

random 1 68.99 81.24 53.42 76.69 84.24 78.55
random 5 70.23 82.45 - 78.55 83.38 -
similar 1 70.68 82.62 58.21 76.13 84.77 82.67
similar 5 74.39 84.10 - 76.82 86.09 -

4 In-Context Learning via Demonstrations

There exist some works that explore different ways of selecting demonstrations
for in-context learning [13, 22]. To conduct few-shot experiments for CPA we
employ two methods for selecting demonstrations: randomly and based on simi-
larity. In the random method, we simply pick randomly a number of demonstra-
tions to pass to the model. In the similarity method, using the embedding model
text-embedding-ada-002 8, we embed the test examples without labels as well as
the available training examples and select for each test example a number of
most similar examples determined using cosine similarity. The prompt that we
use for running the few-shot experiments is the less-instr-relationships prompt

8 https://platform.openai.com/docs/models/embeddings
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which overall gave a decent score for all models. To perform few-shot, we pass
the demonstrations with the help of a message with the role of user that contains
the demonstration table an an assistant role message that contains the classifi-
cation output for the demonstration. These messages are passed to the model
before passing the last user message which contains the test table. The results of
the few-shot experiments are listed in Table 3. Due to memory issues, we could
run SOLAR only in a one-shot setting. From the table, we can observe that in
the case of GPT-3.5 the similarity method outperforms the random method by
at least 2%, while when using GPT-4 this difference again becomes very small.

5 Fine-Tuning the LLM

We fine-tune the gpt-3.5-0613 model using the sampled training sets of SOTAB
V2 CTA and CPA. We fine-tune the model with different combinations of train-
ing sets: First, we fine-tune the model using only the SOTAB V2 CTA training
set. Second, we fine-tune the model only on the CPA dataset therefore only on
the CPA task. As third approach, we fine-tune the model using the CTA and
CPA datasets from the two previous steps merged together to fine-tune on both
tasks simultaneously. As the last approach, we fine-tune again on both tasks but
with both datasets halved to make the number of fine-tuning examples more
comparable with the first two steps. We refer to these models as cta-ft, cpa-ft,
cta-cpa-ft and cta-cpa-ft-small respectively.

Table 4. Fine-tuning results on CTA and CPA compared to GPT-3.5 zero-shot results.

SOTABV2 CTA SOTABV2 CPA T2Dv2 CTA T2Dv2 CPA

zero-shot 64.35 66.49 69.85 73.58
cta-ft 81.22 63.98 69.43 72.34
cpa-ft 70.95 83.55 65.74 72.95
cta-cpa-ft 82.01 84.08 72.92 76.36
cta-cpa-small-ft 80.35 80.80 71.97 69.51

Results. The results of fine-tuning are shown in Table 4. From them we
conclude that fine-tuning for a specific task greatly increases the Micro-F1 score
for the task and dataset that was used for fine-tuning, while giving small increases
to the dataset from the same domain, and decreasing the performance on both
unseen datasets T2Dv2. When fine-tuning on both tasks with the larger set, we
observe that the model generalizes better to all datasets and there is an increase
in performance in all cases except for one. On the other hand, when this set of
CTA and CPA examples are less, the fine-tuned model performs good on only
the datasets that have been used for fine-tuning and not for the unseen T2Dv2
datasets. By comparing the results in Table 3 and Table 4, we can conclude that
when using GPT-3.5 it is more beneficial to use the training set for fine-tuning
the model rather than using the training set as a pool for demonstrations as fine-
tuning reaches 9% more in F1 score. In addition, fine-tuning also helps reduce
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the number of OOV answers which are over 100 when GPT-3.5 is used in the
zero-shot setting to only around 20-30.

5.1 Comparison to PLM-baselines

We compare the previous zero-shot prompts for GPT-3.5, GPT-4 and fine-tuned
GPT-3.5 to three baselines. The first baseline is a fine-tuned RoBERTa model
with the maximum token length set to 512 and a batch size of 32. The pairs of
columns are concatenated together and passed to RoBERTa which we train for
30 epochs. The second baseline TURL [3] is pre-trained using table corpora and
uses TinyBERT [6] in its architecture. For this baseline we use CrossEntropy
as a loss function and train the model for 50 epochs. The last PLM baseline
DODUO [19] uses a new serialization method where a single table is serialized
into one sequence. For this model, we use a batch size of 32 and run training
for 30 epochs. We run all the baselines three times with three different random
seeds and report their average. For all models we use a learning rate of 5e-5.

Table 5. PLM baselines’ results compared to CPA LLMs’ results.

Method shots SOTAB V2 CPA shots T2Dv2 CPA

GPT-3.5 0 66.49 0 73.58
GPT-4 0 81.43 0 82.35
FT GPT-3.5 2160 83.55 2160 72.95
TURL 2160 60.75 170 59.23
DODUO 10,496 70.34 170 4.08
RoBERTa 2160 71.45 170 81.52

Results. The results of the PLM baselines are summarized in Table 5. Com-
paring RoBERTa and GPT-3.5 which were both fine-tuned on the SOTAB V2
CPA dataset, GPT-3.5 achieves 11% higher in Micro-F1 than RoBERTa. On the
other hand, for the T2Dv2 dataset, GPT-3.5 does not generalize well and the
score compared to RoBERTa fine-tuned with the full T2Dv2 training set is 8%
lower. Comparing to TURL, fine-tuned GPT-3.5 achieves 23% higher Micro-F1,
while comparing it to DODUO which is fine-tuned with more data, GPT-3.5
still achieves 11% more in F1.

6 Conclusion

In this work, we explore different prompt designs for the task of CPA and observe
that LLMs reach a good performance of around 80% with GPT-4 for the datasets
tested. Compared to the PLM baselines, the fine-tuned model and GPT-4 out-
perform their performance by up to 11% on the SOTAB V2 dataset. Finally,
in the scenario where training data is available for GPT-3.5, we conclude it is
better to use the available training data for fine-tuning rather than as a pool for
choosing demonstrations in a few-shot setting with a 9% better Micro-F1.
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columns with pre-trained language models. In: Proceedings of the 2022 Interna-
tional Conference on Management of Data. pp. 1493–1503 (2022)

20. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., et al.:
Llama 2: Open foundation and fine-tuned chat models (2023)

21. Venetis, P., Halevy, A.Y., Madhavan, J., Pasca, M., Shen, W., Wu, F., et al.:
Recovering semantics of tables on the web (2011)

22. Ye, X., Iyer, S., Celikyilmaz, A., Stoyanov, V., Durrett, G., Pasunuru, R.:
Complementary explanations for effective in-context learning. arXiv preprint
arXiv:2211.13892 (2022)

23. Zhang, T., Yue, X., Li, Y., Sun, H.: Tablellama: Towards open large generalist
models for tables. arXiv preprint arXiv:2311.09206 (2023)


