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Abstract. We address the task of ontology learning by combining the
structured NeOn methodology framework with Large Language Models
(LLMs) for translating natural language domain descriptions into Tur-
tle syntax ontologies. The main contribution of the paper is a prompt
pipeline tailored for domain-agnostic modeling, exemplified through the
application to a domain-specific case study: the wine ontology. The re-
sulting pipeline is used to develop NeOn-GPT, a workflow for automatic
ontology modeling, and is integrated into the metaphactory platform.
NeOn-GPT leverages the systematic approach of the NeOn method-
ology and LLMs’ generative capabilities to facilitate a more efficient
ontology development process. We evaluate the proposed approach by
conducting comprehensive evaluations using the Stanford wine ontology
as the gold standard. The obtained results show, that LLMs are not
fully equipped to perform procedural tasks required for ontology de-
velopment, and lack the reasoning skills and domain expertise needed.
Overall, LLMs require integration into workflow or trajectory tools for
continuous knowledge engineering tasks. Nevertheless, LLMs can sig-
nificantly alleviate the time and expertise needed. Our code base is
publicly available for research and development purposes, accessible at:
https://github.com/andreamust/NEON-GPT.

Keywords: Ontology Modelling · Large Language Models · NeOnMethod-
ology.

1. Introduction

LLMs have revolutionized the landscape of both artificial intelligence research
and our daily life [14,30]. They have shown unparalleled capabilities in under-
standing, generating, and interpreting human language, thus becoming integral
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tools in various domains ranging from automated content creation to complex
decision support systems. However, despite their impressive capabilities, they
present several fundamental limitations such as: (i) the lack of embodied ground-
ing, informed by real-world sensorial data [18], (ii) the well-known hallucination
problem and incomplete information processing [13], and (iii) and the lack of
robust fact-checking mechanisms to validate generated content [28]. These chal-
lenges have in turn highlighted the need for ongoing research and development
to enhance the reliability, accuracy, and overall utility of LLMs in knowledge-
intensive applications, paving the way for the integration of LLMs and knowledge
graphs (KGs) on one side using KGs as reinforcement learning and on the other
side using LLMs to elicit, provide, and correct generic domain requirements and
desiderata [23]. This work is focused on the last point, namely the adoption of
LLMs for ontology learning [17], intended as the integration of semi-automatic
techniques as a support for the cooperative ontology engineering process.

This work aims to generate a plausible first draft of domain-specific ontolo-
gies, starting from mere domain descriptions, provided in natural language, to
get an actual formalization of the domain knowledge expressed in Turtle syntax.
Our purpose is to enhance the efficiency of the ontology learning process. To do
so, we re-engineer the NeOn methodology framework [32,11] to be given as an
instructory paradigm for generative LLMs [35].
Our contributions can be summarized as follows:

– Prompt pipeline implementation based on the principles of the NeOn method-
ology, to facilitate ontology learning for domain-specific ontologies.

– Development of the NeOn-GPT workflow, an automated workflow for on-
tology generation. NeOn-GPT uses the NeOn methodology to guide LLMs
through structured ontology-building phases, including concept refinement
and axiom elaboration, with features for validation and soundness checks.

– In-depth evaluation of our approach, with the wine ontology as a use case.

The paper is structured as follows: Section 2, an overview of the existing litera-
ture. Sections 3 and 4 present our approach, the NeOn-GPT workflow, and the
integration with the metaphactory platform. Section 5 is dedicated to the exper-
iments and in Section 6, the results obtained from applying our methodology.
Finally, Section 7 offers a conclusion and future research endeavors.

2. Related Work

Relevant work to this contribution includes ontology learning from text, LLMs
for conceptual modeling, and the NeOn methodology for ontology development.

Ontology Learning from Text is the task of automatically extracting and
generating the components of an ontology from textual data [17]. An early ap-
proach [12], utilizes lexico-syntactic patterns for ontology learning, enabling the
automated extraction of hierarchical relationships from large text collections and
enhancing existing lexical databases like WordNet. [2] used corpus analysis for
ontology construction, by extracting relevant concepts and relationships from
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the linguistic and domain-specific terminology in text corpora. [17] elaborate on
integrating Natural Language Processing (NLP) and Semantic Web applications
in ontology learning. They utilize NLP techniques to extract concept hierarchies
and relationships from unstructured web content to automate the creation of
semantic web annotations. [6] propose Text2Onto framework for data-driven on-
tology learning, utilizes probabilistic algorithms, association rule mining, and
clustering techniques for extracting concepts, relationships, and categorizing en-
tities within ontologies from textual data. These works inspire our use of an
established ontology development framework to guide LLMs, by demonstrating
the effectiveness of structured rule-based methods and NLP methods in extract-
ing and organizing knowledge from text.

LLMs for Conceptual Modelling, The fusion of LLMs with conceptual
modeling practices represents a novel approach to understanding and organiz-
ing knowledge. Early experiments like the LAMA benchmark [25] evaluate LMs’
understanding of factual and commonsense knowledge through ’cloze’ prompts,
where the model’s task is to accurately complete sentences missing words that
represent subject-relation-object triples. This showcases LMs’ ability to inter-
pret and utilize structured knowledge required for conceptual modeling. Further
experiments use ChatGPT for generating entity-relationship diagrams, to illus-
trate LLMs’ capability to directly translate natural language descriptions into
structured conceptual models, leveraging structured prompts and a zero-shot
learning approach [7]. [33] use LLMs to visualize data interconnections by intro-
ducing GraphGPT, they prompt LLMs to transform textual information into the
corresponding knowledge graphs. Another approach for knowledge graph gener-
ation is proposed by [4], where LLMs are prompted in a bottom-up approach
to initially create an element hierarchy and subsequently identify possible re-
lationships between elements. These works are relevant input to our work as
they demonstrate LLMs’ capability to interpret and structure domain-specific
knowledge into conceptual models.

NeOn Methodology for Ontology Development [32,11] is designed to
facilitate ontology development through a comprehensive, scenario-based frame-
work. It enables flexibility with alternative development paths and delivers a
structured approach through detailed guidelines for processes and activities as-
sociated with ontology development. Contrasted with Agile methodologies like
the eXtreme Design (XD) [27], NeOn emphasizes detailed planning over Agile’s
rapid, minimal design approach [31]. This makes NeOn well-suited for projects
that require deep conceptualization and systematic methodology, especially in
collaborative and iterative ontology development. NeOn offers a generic frame-
work that aligns with software engineering principles for a broad array of ontol-
ogy development projects, this sets NeOn apart from more specialized method-
ologies such as SAMOD [24] and RapidOWL [1].

We follow three distinct phases from the NeOn methodology: (i) specification
of ontology requirements — defining purpose, scope, and target group; (ii) ontol-
ogy conceptualization — establishing class hierarchy and structuring concepts;
and (iii) ontology implementation in a specific formalism (e.g., Turtle syntax[3]).
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3. Methodology

3.1. NeOn-GPT Workflow

Our proposed approach capitalizes on LLMs’ ability to interpret and generate
natural language to understand domain descriptions and convert them to their
corresponding ontologies. We use the NeOn methodology framework, known for
its structure and iterative approach to guide ontology development through dis-
tinct phases: requirement specification, ontology conceptualization, and ontology
implementation, to ensure that the generated ontology is not only logically sound
but also aligned with domain requirements. We convert the NeOn methodology
framework to a series of prompts to an LLM, specifically GPT-3.5. This synergy
is encapsulated in our workflow (NeOn-GPT) illustrated in Fig. 1.

Ontology Domain GPT-3.5

Prompts
1.                   
2.           
3.

Ontology Draft Syntax Check

Ontology 
Syntactically 

Correct

Hermit Reasoner

Ontology 
Consistent Prompts

1.                   
2.           
3.

Prompts
1.                   
2.           
3.

Syntax Fix
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Consistency FixNoYesValidation

Pitfalls 
Found in 
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1.                   
2.           
3.

Pitfall Fix
No

Final Ontology

Yes

Fig. 1: NeOn-GPT Ontology Engineering Pipeline

Step 1 - Ontology draft generation: Following the NeOn Methodology
Framework for ontology development. In particular, we focus on the “Specifica-
tion of ontology requirements” section, which includes: (i) providing a generic
domain description, (ii) specification of the ontology purpose, (iii) scope, and
(iv) requirements of the ontology, and (v) example competency questions (CQs).
We translate this framework and domain description into a series of structured
prompts for an LLM, GPT-3.5 [37]. To enhance prompt quality, we use prompt
engineering techniques, such as Chain-of-Thought (CoT) [38] and Role-play
prompting [29]. CoT prompts guide GPT-3.5 through a series of logical steps to a
final output clarifying LLMs’ reasoning process, while Role-play LLMs to adopt
specific perspectives or personas (e.g., “Experienced Knowledge Engineer”), re-
sulting in more contextually relevant responses. This approach is detailed in Fig.
2a. We further prompt GPT-3.5 to generate CQs as brief queries that help clarify
and assess the knowledge representation within the ontology (see Fig. 2b).

Following this, ontology conceptualization, and conceptual modeling in the
NeOn methodology involves entity and relationship extraction. Through few-
shot prompting [36], we prompt GPT-3.5 to extract entities and relationships
from the generated CQs and generate a conceptual model of the ontology in
the form of subject-relation-object triples (see Fig. 3). Few-shot prompting in-
volves the construction of prompts that describe the task, accompanied by a
set of examples enabling the LLM to generate contextually relevant outputs.
In the context of the wine ontology, examples of entities include Wine and
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GrapeVariety. Examples of properties of the Wine entity include Color and
SugarLevel. The domain range for the property Color of the Wine entity is:
(Red, White, Rosé). The relationship between Wine and GrapeVariety enti-
ties is: Wine hasGrapeVariety GrapeVariety.

Lastly, for ontology implementation, we prompt GPT-3.5 to use the gener-
ated triples to implement a full ontology serialized in Turtle syntax. Following
this, we apply formal modeling to accurately capture the domain’s complexities
and relationships in the ontology, ensuring it is logically sound and capable of
supporting advanced reasoning. This entails prompting GPT-3.5 to include ob-
ject properties: inverse, reflexivity, transitivity, symmetry, and functional. The
prompt is constructed such that object properties are added when meaningful
while ensuring the ontology remains consistent. An example of the generated
triples is shown in Fig. 4. To enhance ontology usability and readability, we
prompt GPT-3.5 to enrich entities and relationships with natural language de-
scriptions and add essential metadata such as IRI, labels, and versions (see Fig.
5). To ground the ontology in real-world data and facilitate knowledge discovery,
we use few-shot prompting to populate the ontology with real-world instances
(see Fig. 6).

Step 2 - Syntax validation: our workflow illustrated in Fig. 1 verifies
that the generated ontology draft is syntactically correct using the RDFLib
python package [16]. RDFLib detects syntax errors and error messages are used
to prompt GPT-3.5 for error correction (example in Fig. 7).

Step 3 - Consistency check: after examining the resulting ontology, it
became apparent that introducing domain complexity, also resulted in the in-
troduction of some inconsistencies. To remedy this, we use the HermiT reasoner
API [9] to ensure that the resulting ontology is logically sound and free from
inconsistencies. The inconsistency error messages generated by the HermiT rea-
soner are used as prompts to GPT-3.5 for inconsistency resolution, as shown in
Fig. 8.

Step 4 - Pitfall resolution: our workflow uses OOPS API [26] for pitfall
scanning to validate the generated ontology, common pitfalls include circular
axioms and missing disjointness. OOPS API categorizes common pitfalls into
three categories: Critical, Important, and Minor. GPT-3.5 showed proficiency in
addressing Critical and Important pitfalls but failed to address Minor pitfalls
and maintain a consistent and coherent ontology. Validation results from OOPS
API are used as prompts for GPT-3.5 for pitfall resolution, as shown in Fig. 9.

A visualization of the final wine ontology structure generated by NeOn-GPT
is illustrated in Fig. 10c.

4. NeOn-GPT Integration with metaphactory Platform

An important aspect to facilitate ontology development with LLMs is providing
the ontology designer with sufficient guidance for the chosen methodology while
ensuring that the output of each step is valid and consistent to qualify as the
input for the subsequent step. This poses a challenge in the context of LLMs,
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as they struggle with procedural tasks, producing hallucinated and fragmented
results, or missing the steps of the process.

To address this challenge, we have integrated the NeOn-GPT prompt pipeline
into the metaphactory platform [10]. To guide the user consistently through the
NeOn methodology, we leveraged the metaphactory built-in workflow ontology,
designed for the representation of interactive workflows. This ontology describes
a workflow on conceptual and instance levels and allows one to associate in-
structions, templates, and other artifacts to a particular workflow step (see Fig.
12). For the NeOn-GPT prompt pipeline, the artifacts are prompt templates,
prompts, and LLM-generated results. On the definition level, each Workflow
Step is associated with an ordered set of Prompt Templates, which corresponds
to the Workflow States and its associated Prompts and results on the instance
level. The ontology implementation step is shown in Fig. 13. The metaphactory
built-in workflow ontology enables results from previous steps to inform sub-
sequent ones. The NeOn-GPT metaphactory integration offers a user-friendly
interface, acting as a copilot for automated ontology development.

5. Experiments

In our experiments, we use the wine ontology to validate the NeOn-GPT work-
flow, showcasing its practical utility in ontology learning. The wine ontology [22]
is a structured framework that organizes wine attributes and relationships, from
grape varieties to taste profiles and production methods, enhancing information
systems for wine knowledge management, retrieval, and recommendations.

To identify the suitable LLM for our task, we used GPT-3.5 [37], Llama
[8], and PaLm [5] through zero-shot prompting experiments. GPT-3.5 generated
syntactically sound and non-redundant ontologies, outperforming Llama and
PaLm, thus chosen for developing NeOn-GPT workflow. In our experiments, we
prompt LLMs to generate ontologies in Turtle syntax [3] after initial experiments
with Owl syntax [19] generated ontologies with syntactical errors. We conduct
three experiments to evaluate our approach:(i) Zero-shot Prompting [15], prompt
GPT-3.5 with wine domain natural language description to generate the wine
ontology in Turtle syntax, (ii) Ontology Development Guide Prompts, parse the
Stanford guide to create ontologies [22], to a series of structured prompts for
GPT3.5 to generate the wine ontology in Turtle syntax, and (iii) NeOn-GPT
Workflow (Our approach).

6. Results

We employed the Protégé Stanford University Wine Ontology [22] as the gold
standard ontology for benchmarking our resulting ontologies. Comparing the
Zero-Shot Prompting Ontology, Ontology Development Guide Ontology, and
NeOn-GPT Ontology against gold standard ontology, illustrated in Fig. 10, re-
vealed that both the Zero-Shot Prompting and Ontology Development Guide
ontologies exhibited a flat hierarchy, lacked conceptual structure, and contained
syntactical errors and redundant terms. Given NeOn-GPT’s wine ontology’s su-
perior capacity to capture domain complexity while remaining logically sound
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and consistent compared to its counterparts, we conduct in-depth evaluations to
compare NeOn-GPT’s wine ontology to the gold standard wine ontology, illus-
trated in Table 1. These evaluations encompass both structural assessment and
pre-inference and post-inference assessment.

Metric Gold standard wine ontology NeOn-GPT wine ontology

Axioms 911 387
Logical axioms count 657 139
Asserted Class count 77 39
Object property count 13 24
Data property count 1 12
Properties count 14 36
Individual count 161 25

Table 1: Ontology Metrics Comparison - gold standard wine ontology and NeOn-
GPT wine ontology [source: OntoMetrics [34], Protégé [20]].

6.1. Structural Assessment

Involves schema and hierarchical comparisons. Results from the schema compar-
ison illustrated in Table 1, can be summarized as:

– NeOn-GPT wine ontology exhibits approximately half the asserted classes
found in gold standard wine ontology, suggesting a narrower scope of con-
ceptual richness.

– NeOn-GPT wine ontology has approximately twice the object properties
compared to gold standard wine ontology, suggesting better identification of
salient features within the wine domain.

– NeOn-GPT wine ontology has twelve times the number of data properties
compared to gold standard wine ontology, pointing to greater depth in class
membership assignment.

– Although NeOn-GPT wine ontology has higher counts of object and data
properties than the gold standard wine ontology, it features significantly
fewer axioms. Reflecting that LLMs struggle to establish subject-relation-
object triples. This can be attributed to LLMs generative capabilities that
rely on statistical correlations and vector search methods, not on deductive
reasoning or formal logic.

– NeOn-GPT wine ontology contains only one-sixth the number of individuals
present in gold standard wine ontology, reflecting its stronger emphasis on
identification rather than instance enumeration.

Results from hierarchical comparison illustrated in Fig. 10 and Table 1, can
be summarised as:

– Class distribution: NeOn-GPT wine ontology differs notably from gold stan-
dard wine ontology, featuring a total of 39 classes, 36 classes without and 3
with sub-classes, compared to gold standard wine ontology with a total of
77 classes, 67 without and 10 with sub-classes.

– Class depth: NeOn-GPT wine ontology hierarchy has levels L0-L2 (Thing ->

Wine -> Red Wine) versus gold standard wine ontology’s L0-L3 more gran-
ular hierarchy (Thing -> Potable Liquid -> Bordeaux -> Sauterness).
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6.2. Pre-inference and Post-inference Steps Assessment

Highlights the changes introduced by reasoning in both ontologies.

Pre-inference steps, NeOn-GPT’s wine ontology allows instances of "WhiteWine"
and "RedWine" to inherit from the "Wine" class due to their subsumption rela-
tionship. Conversely, the gold standard wine ontology uses class equivalence with
color property restrictions, preventing "WhiteWine" and "RedWine" instances
from inheriting "Wine" class memberships.

Post-inference steps, the gold standard wine ontology expands "Wine" in-
stances, after including entities: "WhiteWine", "RedWine", and "RoseWine".
NeOn-GPT wine ontology only adds "BurgundyRegion" to "Wine", showing
limited classification properties by classifying based on basic concepts like geo-
graphical regions. Using the example of "CabernetSauvignon", the gold stan-
dard wine ontology infers it as "DryRedWine" through class equivalence and
restrictions, in contrast, NeOn-GPT wine ontology accurately, yet simplistically,
infers it just as a "GrapeVariety" (see Fig. 11), reveals the limited depth of
concept definition in the NeOn-GPT wine ontology for wine classification.

7. Conclusion and Future Work

We present a novel approach to ontology learning using LLMs and the NeOn
Methodology Framework. Results from our experiments are presented in sec-
tions 5 and 6. Our results show that effective prompt engineering techniques
alongside established ontology development methodologies can significantly in-
fluence LLMs’ output to generate more consistent ontologies. However, experi-
ments conducted in this study reveal that the inherent statistical representation
of knowledge within LLMs cannot be directly converted to a formal represen-
tation for a domain-specific ontology creation with the same expressivity as the
gold standard ontology for that domain. These limitations appear to stem from -
class expressions and property restrictions. Class expressions in LLM-generated
ontology are limited to subsumption type and lack conjunction, and disjunction
expression types. This limits their ability to create complex classes from simple
class definitions during the inference step. Similarly, property restriction types
are limited to "HasValue" restrictions, the absence of cardinality, existential,
and universal restrictions limit the scope of class membership inferences dur-
ing the reasoning step. Our experiments demonstrate LLMs can be integrated
into semi-automatic pipelines for generating base ontologies for enhancement
through human-assisted knowledge. Recent studies with LLMs suggest they will
eventually support Knowledge Engineering [35,21].

Future research work could explore augmenting our NeOn-GPT workflow
with KG link prediction techniques to improve the expressivity and chain of
reasoning for improving class expressions and property restrictions. Another path
involves closely combining LLMs with workflows to create a system, acting as a
copilot to support and guide users to build ontologies more effectively. Another
approach, using pre-trained LLMs designed for code generation (e.g., Codex,
Code LlamA) or fine-tuning pre-trained LLMs to produce valid and consistent
ontologies could also enhance outcomes.

8



References

1. Auer, S.: The rapidowl methodology–towards agile knowledge engineering. In: 15th
IEEE International Workshops on Enabling Technologies: Infrastructure for Col-
laborative Enterprises (WETICE’06). pp. 352–357. IEEE (2006)

2. Aussenac-Gilles, N., Biebow, B., Szulman, S.: Revisiting ontology design: a method
based on corpus analysis. In: International Conference on Knowledge Engineering
and Knowledge Management. pp. 172–188. Springer (2000)

3. Beckett, D., Berners-Lee, T., Prud’hommeaux, E., Carothers, G.: Rdf 1.1 turtle.
World Wide Web Consortium pp. 18–31 (2014)

4. Bikeyev, A.: Synthetic ontologies: A hypothesis. Available at SSRN 4373537 (2023)
5. Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A.,

Barham, P., Chung, H.W., Sutton, C., Gehrmann, S., et al.: Palm: Scaling lan-
guage modeling with pathways. Journal of Machine Learning Research 24(240),
1–113 (2023)

6. Cimiano, P., Völker, J.: Text2onto: A framework for ontology learning and data-
driven change discovery. In: International conference on application of natural lan-
guage to information systems. pp. 227–238. Springer (2005)
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34. Tello, A.L., Gómez-Pérez, A.: ONTOMETRIC: A method to choose
the appropriate ontology. J. Database Manag. 15(2), 1–18 (2004).
https://doi.org/10.4018/JDM.2004040101, https://doi.org/10.4018/jdm.

2004040101

35. Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama,
D., Bosma, M., Zhou, D., Metzler, D., et al.: Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682 (2022)

36. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q.V., Zhou,
D., et al.: Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems 35, 24824–24837 (2022)

37. Ye, J., Chen, X., Xu, N., Zu, C., Shao, Z., Liu, S., Cui, Y., Zhou, Z., Gong, C.,
Shen, Y., et al.: A comprehensive capability analysis of gpt-3 and gpt-3.5 series
models. arXiv preprint arXiv:2303.10420 (2023)

38. Zhou, Y., Muresanu, A.I., Han, Z., Paster, K., Pitis, S., Chan, H., Ba, J.: Large lan-
guage models are human-level prompt engineers. arXiv preprint arXiv:2211.01910
(2022)

A. Appendix A: Figures

(a) Using Chain-of-Thought prompt-
ing to prompt ChatGPT to specify the
wine ontology requirements following
the NeOn Methodology Framework.

1. What grape variety is used in a specific wine?
This indicates the ontology must include knowledge of different grape varieties 
and their association with specific wines.

2. What are the flavor profiles (e.g., fruity, earthy, spicy) of a particular wine?
This suggests the ontology needs to classify wines by taste profiles, capturing 
sensory attributes linked to each wine.

3. What is the body (light, medium, full) of a given wine?
This implies the ontology should contain information on the body of wines, 
categorizing them by their perceived weight and fullness on the palate.

(b) Prompting ChatGPT to generate
competency questions for the wine on-
tology.

Fig. 2: Step - 1 Ontology draft generation: specification of ontology requirements,
prompting ChatGPT to specify the wine ontology requirements following the
NeOn methodology framework.
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For each Competency Question extract entities and properties that have to be 
introduced in the ontology.
Do it for all the competency questions, not just a snippet.
Provide an output in a json like format, like this:

{{ \"cq1\" : \"What are the different types of wines (e.g., red, white, rose, sparkling) 
available in the ontology?\", \"Entity\" : [ \"Wine\", \"RedWine\", \"RoseWine\", 
\"SparklingWine\" ] , \"Property\" : [\"subClassOf\" ]}, 

{ \"cq2\" : \"What grape varieties are used in a specific wine?\", \"Entity\": [\"Wine\", 
\"GrapeVariety\"], \"Property\": [\"hasGrapeVariety\"] } }

(a) Using Few-shot prompt- ing to
prompt ChatGPT to extract entities
and properties.

Considering entities and properties, generate a conceptual model expressing in 
form of triples the entities and properties and their relations.
Do it for all the entities and properties, not just a snippet.

(b) Prompting ChatGPT to generate
the corresponding triples to the ex-
tracted entities and properties.

Fig. 3: Step - 1 Ontology draft generation: prompting ChatGPT to create a con-
ceptual model of the wine ontology based on the generated competency questions
in Fig. 2b.

hasGrapeVariety

usedToProduce

Fig. 4: Step - 1 Ontology draft generation: illustration of prompting Chat-
GPT to extend the generated wine ontology with inverse object properties:
"usedToProduce" inverse to the existing "hasGrapeVariety" property.

For all the classes and properties add a triple that describes in natural language its 
meaning, using the annotation property rdfs:comment.
Do it for the whole ontology, not just a snippet.

Fig. 5: Step - 1 Ontology draft generation: prompting ChatGPT to generate
natural language descriptions for entities and properties in the wine ontology.
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Populate the ontology with meaningful individuals, such as:
:RieslingGrape rdf:type :GrapeVariety
:SancerreRegion rdf:type :WineRegion
:Bordeaux rdf:type :Wine
:CabernetSauvignon rdf:type :Wine

Make it as complete as possible, introducing e.g. all the types of wine, wine regions, 
awards, wine producers, etc.
Do it for the whole ontology, not just a snippet.

Fig. 6: Step - 1 Ontology draft generation: using Few-shot prompting to prompt
ChatGPT to populate the wine ontology with real world instances.

RDFLib 7.0.0

Fig. 7: Step - 2 Syntax validation: example of using errors produced by RDFLib
to prompt ChatGPT to fix syntax errors, declaring undefined prefix "Wine".

InconsistentOntologyException: Cannot do reasoning with inconsistent ontologies!
Reason for inconsistency: Literal value “Yellow” is not valid for the rdatatype Color

Fig. 8: Step - 3 Consistency check: illustration of an inconsistency in the wine
ontology detected by HermiT Reasoner, incorrect assignment of "Yellow" as a
wine color. ChatGPT identified "White" as the valid color using the HermiT rea-
soner error as a prompt, aligning with the domain range: (Red, White, Rosé).
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Fig. 9: Step - 4 Pitfall resolution: illustration of a pitfall detected by OOPS
API where the wine ontology lacked disjointness. Prompting ChatGPT using
the pitfall description from OOPS API as a prompt, ChatGPT introduced the
necessary disjointness axioms such as "RedWine" is disjoint with "WhiteWine".

         (a)  Zero-shot Prompting                   (b)  Ontology Development Guide Prompts                        (c)  NeOn-GPT                              (d)   Gold Standard (Benchmark)

Fig. 10: Comparative overview of the wine ontology structures.

(a)  Gold Standard Inferred Instance                                                                                   (b)  NeOn-GPT Inferred Instance 

Fig. 11: Ontological inferences of "CabernetSauvignon".
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Fig. 12: metaphactory built-in Workflow Ontology. Workflow Definition and
Workflow Instantiation are distinguished. A workflow is defined by a sequence of
Workflow steps, where each step has one or more Prompt Templates, applied in
a particular order. A workflow instance is a sequence of Workflow states, where
each state has one or more prompts.

Fig. 13: NeOn-GPT metaphactory Integration: Ontology Implementation Step.

15


	NeOn-GPT: A Large Language Model-Powered Pipeline for Ontology Learning

