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Abstract. In the ever-evolving landscape of global commerce, supply
chain management (SCM) has gained increasing significance. An impor-
tant task in SCM is to find critical supply chain paths for a target com-
pany because these paths often represent potential bottlenecks in supply
networks and thus could be crucial to risk management. The mainstream
solution to this task requires supply chain managers to manually review
supply chain data to uncover critical paths, resulting in considerable hu-
man labor costs. To better study SCM, recent efforts have been made
to construct supply chain knowledge graphs (KGs) that connect supply
chain-related data from different sources, facilitating the identification
of critical paths through KG reasoning. In this paper, we develop an
automated approach for critical path identification (CPI) based on sup-
ply chain KGs. We encode supply chain KGs into text and use large
language models (LLMs) for CPI. LLMs can not only analyze the topo-
logical KG information but also leverage their world knowledge for better
path identification. We experiment with two popular LLMs, i.e., GPT-
3.5 and GPT-4, and find that they are able to do CPI and meanwhile
generate reasonable explanations.

1 Introduction

In today’s interconnected global economy, effective supply chain management
(SCM) plays a key role in entrepreneurial success. As a crucial task in SCM,
critical path identification (CPI) in supply networks has recently gained increas-
ing interest. CPI aims to find the significant supply chain paths related to a
certain user-interested company. Each supply chain of length n − 1 follows the

format of (Company1
supplies to−−−−−−−→ ...

supplies to−−−−−−−→ Companyn), where Companyn
is the company of interest. These critical paths often constitute potential bottle-
necks for specific products or other vital business operations, highlighting their
strategic importance [2]. A major obstacle in solving CPI stems from the lack of
transparency in supply networks. Recently, Liu et al. [1] show that companies are
usually limited to only knowing their direct (tier-1) suppliers without complete
knowledge of further tiers of suppliers. Consequently, they struggle to identify
longer critical paths in supply chains. To address this problem, Liu et al. focus
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Fig. 1: Framework of approach. Best viewed in color.

on developing transparent supply networks that provide visibility into suppliers
up to the third tier while representing supply chains as knowledge graphs (KGs).
Despite the introduction of supply chain KGs, [1] has not explored automated
approaches to address CPI within supply networks, which heavily rely on manual
labor by supply chain managers.

In this study, we present an automated solution for CPI utilizing large lan-
guage models (LLMs). Given their robust emergent capabilities in diverse down-
stream tasks without the need for fine-tuning, LLMs serve as a promising tool for
this task. Our approach can identify the critical paths given the supply chain KG
and any target company. To the best of our knowledge, the method we proposed
is the first to use LLMs to address CPI in large supply networks.

2 Approach

The framework of our approach is depicted in Fig. 1. Taking the supply chain
KG4 G and a target company δ as input, we first extract the relevant subgraph
of δ from G by picking all the KG facts containing δ and all its tier-1 to tier-3
suppliers. Then, the subgraph is encoded into a text description. Based on the
description, we initiate a multi-turn question answering (QA) process with an
LLM, e.g., GPT-4, in order to step-by-step guide the LLM to provide critical
supply chain paths5 along with corresponding explanations. The criticality of
these paths, as well as the consistency between the explanations and the supply
chain KG, will then be evaluated by domain experts. Finally, a visualization will
be generated for each path for better user understanding. Note that although the
LLM-identified paths will be verified by humans, it is much easier than manually
identifying critical paths from scratch.

4 Our work is developed on top of the supply chain KG proposed in [1]. Please refer
to [1] for detailed ontology and KG statistics.

5 In our use case, we only pay attention to the paths of length 2, among 3 entities.
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supplies to: 
b1<-b2, b4; b2<-b3;
produces: 
b2->p1, p2; b3->p3; b4->p4;
located in:
b1->c1; b2->c1; b3->c3; b4->c2;
related to:
b1->bs1; b4->bs1;
b2->bs2; b3->bs2;

BASF, Nvidia supply to VW, 
X Lab supplies to BASF.
VW, BASF are in Germany, 
X Lab is in France, Nvidia is 
in the US.
VW and Nvidia are related 
to chip, BASF, X Lab are 
related to chemistry.
Nvidia produces circuit, X 
Lab produces sulfur, BASF 
produces fiber and glass.

Adjacent Link
(80 tokens)

Natural Language
(152 tokens)

VW:b1, BASF:b2, X Lab:b3, 
Nvidia:b4, Fiber:p1, Glass:p2, 
Sulfur:p3, Circuit:p4, DE:c1, 
US:c2, FR:c3, Chip:bs1, Chem:bs2

Fig. 2: Two encoding methods. For AL encoding, the contents in the yellow box
are not passed to LLMs but just serve as a reference for entity ID mapping.

How to encode a KG subgraph as LLM input? We design two encoding schemes,
namely adjacent link (AL) encoding and natural language (NL) encoding. AL
encoding (1) maps the names of all entities to distinct IDs, (2) groups the rela-
tionships by their types, and (3) translates the relationships into lists of adjacent
links. For example, a link b01←− b03, b05, b11 under the group supplies to in-
dicates that b03, b05, and b11 all supply to b01. On the other hand, NL does
not anonymize the elements in the supply network but directly outputs a natu-
ral language description of it. While NL encoding is more interpretable by both
humans and LLMs, it requires more tokens to convey the same information com-
pared with AL. Fig. 2 shows the outcomes of these two schemes, from which we
can see this trade-off of token length and interpretability.

Why and how to use multi-turn QA? CPI on a large supply chain KG is a non-
trivial task, hence we decompose the complicated task into several sub-tasks. A
supply chain path of length 3 consists of the target company, one tier-1 supplier,
and one tier-2 supplier. Hence, we start by asking the LLM to give the top 20
significant tier-1 suppliers of the target company, then proceed to ask about
the top 20 significant tier-2 suppliers, which are direct suppliers from the LLM-
generated tier-1 suppliers. We finally ask LLM to find the 20 most critical paths.
We show in experiments that employing task decomposition promotes the LLM’s
performance in finding more reasonable critical paths.

3 Experiments

To evaluate the effectiveness of our approach, we select three target companies
coupled with various sizes of supply chain subgraphs, i.e., BASF, Siemens and
Henkel (statistics in Table 1 (left)). For each target company, we run exper-
iments with both GPT-3.5 and GPT-4. We discard the paths returned by the
LLMs that do not exist in the supply chain KG and take the rest as the identified
critical paths. These paths are then evaluated by domain experts, who would
check whether (1) the paths are indeed critical for SCM and (2) the generated
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Table 1: Subgraph statistics (left) and experimental results (right). multi and
directmean with and without multi-turn QA (task decomposition), respectively.

BASF Siemens Henkel

# Entity 301 187 276
# Relation 5 5 5
# KG Fact 1426 1336 903

GPT-3.5 GPT-4

Model NL AL NL AL

multi direct multi direct multi direct multi direct

BASF 0.650 0.455 0.438 0.412 0.958 0.875 0.733 0.600

Siemens 0.714 0.450 0.647 0.550 0.870 0.800 0.706 0.678

Henkel 0.778 0.538 0.650 0.571 0.895 0.786 0.727 0.500

“Hitachi, an important supplier to 
Siemens, is a significant semiconductor 
product supplier. They source sulfuric 
acid from Hindalco Industries, which is 
crucial for industrial applications.”

“Both suppliers have a broad 
business scope and a strong 
role in the network.”

siemensHitachiHindalco
sulfuric

acid

chemical resistor

testing

semi-
conductor

circuit
board

siemensJabilTexas Inc.

semi-
conductor

circuit

Natural Language Encoding

Adjacent Link Encoding

Fig. 3: Two identified critical paths from the Siemens subgraph. Natural language
encoding helps the LLM to generate more informative explanations.

explanations are consistent with the supply chain KG. If any of the two require-
ments is not met, we take the path as incorrect. We let the LLMs return the
20 most critical paths and calculate the accuracy for them. We show the results
in Table 1 (right) and demonstrate two correctly identified paths with GPT-4
using different KG encoding strategies in Fig. 3. We observe that (1) LLMs have
the ability to automatically do CPI; (2) NL serves as a better encoding strategy
since it leverages background knowledge of companies stored in LLMs, making
the explanations more reasonable; (3) decomposing CPI greatly helps LLMs to
return more accurate critical paths with reasonable explanations since it forces
LLMs to pay attention to the critical suppliers that are more likely to exist in
critical paths.

4 Conclusion

We propose an automatic approach to encode supply chain KGs and identify
critical paths in them with LLMs. Our approach achieves strong performance
under the evaluation of domain experts, serving as a new tool that greatly saves
human labor in supply chain management.
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