
PySPARQL Anything Showcase⋆

Marco Ratta1[000−0003−3788−6442], Luigi Asprino2[0000−0003−1907−0677], and
Enrico Daga1[0000−0002−3184−5407]

1 The Open University, Walton Hall, Milton Keynes, UK
{marco.ratta,enrico.daga}@open.ac.uk

2 University of Bologna, Italy
luigi.asprino@unibo.it

Abstract. In this demo paper we present PySPARQL Anything, the
Python library of SPARQL Anything, an open source project for sup-
porting semantic web technologists in building RDF graphs from het-
erogeneous sources. PySPARQL Anything enables developers to inject
RDF graphs into their Python RDFlib, NetworkX or pandas-powered
data science processes, opening new opportunities for developing com-
plex, data-intensive pipelines for generating and manipulating RDF data.
In addition, the library exposes a Python-based Command Line Interface
(CLI) allowing easier installation and use.

Keywords: Knowledge Graph Construction · Façade-X · SPARQL Any-
thing · Python

1 Introduction

Knowledge Graphs are nowadays first-class citizens in data science as it allows
seamless integration of diverse data [4]. Therefore, there has been increasing ef-
fort in supporting Python developers to work with RDF Knoweldge Graphs [3,
2]. In this demo, we aim to present and disseminate to the Semantic Web com-
munity PySPARQL Anything3, the Python library of SPARQL Anything4, an
open source project that supports semantic web technologists in building RDF
graphs from heterogeneous sources. SPARQL Anything is a data integration
system that implements the Façade-X meta-model, resolving the heterogeneity
of sources by structurally mapping them onto a set of RDF components, upon
which semantic mappings can be constructed [1]. Using the JSON data hosted
at https://sparql-anything.cc/example1.json for example, one can select the TV
series starring "Courteney Cox" with the SPARQL query:
⋆ The research leading to this publication has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement
"Polifonia: a digital harmoniser of musical cultural heritage" (Grant Agreement N.
101004746), https://polifonia-project.eu. The publication reflects the author’s views.
The Research Executive Agency (REA) is not liable for any use that may be made
of the information contained therein.

3 https://github.com/SPARQL-Anything/PySPARQL-Anything
4 https://github.com/SPARQL-Anything/sparql.anything

2 M. Ratta et al.

PREFIX xyz: <http :// sparql.xyz/facade -x/data/>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX fx: <http :// sparql.xyz/facade -x/ns/>
SELECT ?seriesName
WHERE {

SERVICE <x-sparql -anything:https ://sparql -anything.cc
/example1.json > {
?tvSeries xyz:name ?seriesName .
?tvSeries xyz:stars ?star .
?star fx:anySlot "Courteney Cox" .

}
}

to directly obtain the results:

seriesName
"Cougar Town"
"Friends

The accumulated experience and feedback from the community of SPARQL
Anything users, has lead to the decision of developing a Python integration. This
is because of the emergent need to support the increasing community of Python
users of Semantic Web technologies and the wide spread adoption of Python
based tools for downstream tasks. PySPARQL Anything enables developers to
inject RDF graphs into their Python RDFlib5, NetworkX 6 or pandas7-powered
data science processes, opening new opportunities for developing complex, data-
intensive pipelines for generating and manipulating RDF data. Additionally the
library exposes a Python-based Command Line Interface (CLI) allowing for eas-
ier installation and use. We demonstrate the usage of PySPARQL Anything via
a "pythonic" re-interpretation of the showcase-musicxml8 showcase, available at
the SPARQL Anything Github repository for comparison.

2 PySPARQL Anything

PySPARQL Anything has been by borrowing some concepts of the Command
behavioural pattern. The interface is the pysparql_anything.SparqlAnything
class, with its run, ask, select and construct methods. The arguments spec-
ifying a user’s SPARQL request are passed as keyword arguments. Therefore,
they are automatically encapsulated by the language as a dict object that is
passed, together with a receiver object, to a specific execution method.

5 https://github.com/RDFLib/rdflib
6 https://github.com/networkx/networkx
7 https://github.com/pandas-dev/pandas
8 https://github.com/SPARQL-Anything/showcase-musicxml

PySPARQL Anything Showcase 3

The receiver is a pysparql_anything.SparqlAnythingReflection object,
which is a Python "reflection" of the SPARQLAnything class, the entry point of
SPARQL Anything. This has been implemented using the PyJNIus 9 library.

The receiver’s output is either printed to the terminal, saved to a
file (when using the run method), or returned as Python objects. Specif-
ically, the tool supports returning the results of SELECT queries as dict
or pandas.DataFrame objects and the results of CONSTRUCT queries as
rdflib.Graph or networkx.MultiDiGraph objects. These can be achieved via
the select and construct methods respectively. The results of ASK queries are
returned as Python booleans when calling the ask method.

PySPARQL Anything also offers a CLI which processes the optional query
arguments and passes them directly to the receiver object. This is accessed via
the terminal using the sparql-anything command.

PySPARQL Anything is distributed on the Python Package Index (PyPI) 10

and is installed by typing the following in your machine’s terminal.

$ pip i n s t a l l pysparql−anything

The code is also available at the corresponding Github repository11.

3 Scenario
In the demo, we will first illustrate basic ways to invoke SPARQL Anything
from Python code, and obtain objects to be further manipulated in the script.
Furthermore, we will present an end-to-end scenario, based on a case study in
computational musicology. A music score in MusicXML is processed with PyS-
PARQL Anything to generate a Knowledge Graph. Such graph is then analysed
with Python libraries to derive interesting metrics such as statistics on note
trigrams and derive a probability mass function of the data.

The demo can be accessed and executed via a live Google Colab notebook
at the following address: https://bit.ly/pysa-demo
Step 1 In the first step, we setup the library and load the MusicXML files:
import pysparql_anything as sa
Construct the SparqlAnything object
engine = sa.SparqlAnything ()
Assign the root directory of the files to a variable
root_dir = "showcase -musicxml/musicXMLFiles/AltDeu10/"
Create a list of the names and paths to the xml files
xmls= [(name , os.path.join(root_dir , name)) for name in os.listdir(root_dir)]

Step 2 Next, we proceed with extracting melodic information, specifically, we
show how one can use PySPARQL Anything to integrate SPARQL queries into
a downstream task:
melody_dfs = [engine.select(

query="showcase -musicxml/queries/getMelodyParam.sparql",
values ={"filePath": xml[1]},
output_type=pd.DataFrame

) for xml in xmls]

9 https://github.com/kivy/pyjnius
10 https://pypi.org/project/pysparql-anything/
11 https://github.com/SPARQL-Anything/PySPARQL-Anything

4 M. Ratta et al.

Step 3 In the following code, we build trigrams from the data and count them:
helper function to build and count the trigrams from a melody DataFrame
def count_trigrams(notes: list , trigrams_dict=dict()) -> dict[str , int]:

for i in range(len(notes) - 2):
trigram = notes[i] + "-" + notes[i + 1] + "-" + notes[i + 2]
if trigram in trigrams_dict:

trigrams_dict[trigram] += 1
else:

trigrams_dict[trigram] = 1
return trigrams_dict

Construct the trigrams and count their frequencies.
Store the results in a dictionary
trigrams = dict()
for melody_df in melody_dfs:

notes = list(melody_df["pitch"])
count_trigrams(notes , trigrams)

Step 4 Finally, we produce the probability mass function of the data:
Calculate the total number of trigrams in the dataset
total = sum(list(trigrams.values ()))
Construct the probability mass function of the trigrams in the dataset
pmf = {k: v / total for k, v in trigrams.items ()}
(Optional) Convert the pmf to a pd.DataFrame
pmf_df = pd.DataFrame(

data =[[k, v] for k, v in pmf.items()],
columns =["trigram", "P(trigram)"]

)

As a result we obtain

index , tr igram ,P(tr igram)
0 ,A4−C5−D5,0 .0011237357972281184
1 ,C5−D5−E5,0 .0032463478586590086
2 ,D5−E5−E5,0 .0011237357972281184
3 ,E5−E5−A4,6 .242976651267325 e−05
. . .

which can be compared to the result file trigramAnalysis.csv of the showcase.

References

1. Asprino, L., Daga, E., Gangemi, A., Mulholland, P.: Knowledge Graph Construction
with a façade: a unified method to access heterogeneous data sources on the Web.
ACM Transactions on Internet Technology 23(1), 1–31 (2023)

2. Dasoulas, I., Chaves-Fraga, D., Garijo, D., Dimou, A.: Declarative RDF construction
from in-memory data structures with RML (2023)

3. Liang, L., Li, Y., Wen, M., Liu, Y.: Kg4py: A toolkit for generating python knowl-
edge graph and code semantic search. Connection Science 34(1), 1384–1400 (2022)

4. Wilcke, X., Bloem, P., De Boer, V.: The knowledge graph as the default data model
for learning on heterogeneous knowledge. Data Science 1(1-2), 39–57 (2017)

