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Abstract. Causal inference creates insights into observational data. Such
insights could explain an outlying value to perform Root Cause Analy-
sis. But how can causal inference be used with semantically annotated
observations? The following demo showcases how to use semantically an-
notated sensor data for causal inference. The method’s implementation
uses an agent pattern interacting with a knowledge graph.
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1 Introduction

Causal inference explains events in observations (e.g. an outlying value) in more
detail than standard statistical analysis [4]. Therefore, it is a helpful tool for
performing Root Cause Analysis (RCA) to understand the cause of an undesired
event. Our demo3 shows how to use semantically annotated data to create causal
insights into observations. Our contribution includes annotating a causal model
based on observations described with the Semantic Sensor Network Ontology
(SOSA) [2]. In addition, we show a localized, recursive causal model evaluation
using a knowledge graph in the Resource Description Framework (RDF).

2 Causality

According to Pearl [4], a causal graph encodes the dependencies of a system’s
variables and the direction of their influences on each other. A causal graph
represents variables with nodes and dependencies with directed edges [4]. We
can define causal mechanisms for each node based on the encoded structure. A
causal mechanism describes the behavior of the associated variable with respect
to its parent variables in the graph. Based on a causal model, causal inference
infers explanations about observed data. A ground truth causal model encodes
the physical mechanisms used to generate an observation, but nature hides this
ground truth causal model from us [4]. To uncover parts of the ground truth
causal model, we use the knowledge of a system’s domain expert or algorithms
from causal discovery.

3 Link to the video showing the demo: https://www.tim-strobel.de/eswc24/
causality-agents-demo-24.webm

https://www.tim-strobel.de/eswc24/causality-agents-demo-24.webm
https://www.tim-strobel.de/eswc24/causality-agents-demo-24.webm
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3 Approach

Our approach demonstrates how to add causal dependencies and mechanisms
to SOSA observations in an RDF graph. Based on the built RDF graph, we
demonstrate causal inference in a recursive, localized manner to find root causes
for outliers. The implementation follows a Simple Reflex Agent [5] pattern. The
agents retrieve data from an RDF graph via SPARQL queries, process the data
with pre-set rules, and save inferred conclusions into the graph.
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Fig. 1. Simplified incubator example of Feng et al. [1]

We use the running example Incubator described by Feng et al. [1] in a sim-
plified version displayed in Figure 1a. The Incubator has three SOSA:Observable
Property, which are <insideAir/temperature>, <outsideAir/temperature>, and
<heater/state>. To add the causal knowledge to the RDF graph containing the
SOSA annotated observations, instances of SOSA:ObservableProperty are also
assigned to the class CausalNode. We can describe a causal dependency in the
RDF graph by linking two causal nodes via a CausalEdge. A causal mecha-
nism can be added using the class CausalMechanism. We can explain outliers
through causal inference by adding causal nodes, edges, and mechanisms to the
observations in the RDF graph.

RCA uses a set of observations for each time-step for every SOSA:Observable
Property (as displayed in the time-dependent graph in Figure 1c). We sample
observations using a simulated ground truth causal model for the Incubator.
To build this ground truth, we use the assumptions by Feng et al. [1]. This
model defines heat exchange between<insideAir> and<outsideAir> (see Figure
1a/I). In addition, heat is exchanged between <heater> and <insideAir> (see
Figure 1a/II). To distinguish the direction of influences, we assume the following:
Changing <insideAir/temperature> will not affect <outsideAir/temperature> as
well as changing <insideAir/temperature> will not affect <heater/state>. Also,
we add a self-cycle on <insideAir/temperature> since this observable depends
on earlier observations in the time series. The resulting summary causal graph is
referenced in Figure 1b. The according rolled-up, time-dependent causal graph
is shown in Figure 1c.
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3.1 Regression Agent

The Regression Agent retrieves the causal dependencies and the observations
from the RDF graph to fit regression models as causal mechanisms for each
CausalNode. The regression model’s inputs are the parent CausalNode instances.
The temperature measurement within the Incubator is a time-series observation.
Therefore, the agent fits an linear auto-regressive model for the CausalNode
<insideAir/temperature> with inputs <outsideAir/temperature> and
<heater/state>. The auto-regressive approach will assume a time lag of 1. In
the future also more sophisticated methods could be used to determine the time
lag automatically. The time lag considers that a new value is predicted based on
the value one time instance before the prediction value in the time series (see
time t in Figure 1c). The agent compresses and adds the regression model with
a specific URI into the RDF graph.

3.2 Outlier Explanation Agent

The Outlier Explanation Agent uses a method described by Janzing et al. [3].
This approach utilizes an Additive Noise Model (ANM) and Shapley values [6].
ANMs take into account that each observation contains an amount of noise.
To calculate the amount of noise of one observation, we compute the difference
between the observation we made and the estimation of our causal mechanism
– the prediction of the regression model. High noise, therefore, means that a
high amount of the observation is not explainable by the parent nodes, which
are influencing the observed value. With the Incubator example, we use the
regression model of <insideAir/temperature> with the parent variable’s obser-
vations as input and compute an estimation. With the computed estimation, we
calculate the noise as the difference between the estimation and the actual obser-
vation for <insideAir/temperature>. For all variables with no parent variables
and therefore no known causal mechanism to explain the observation, we use the
observation’s value as the noise feature (e.g., for <outsideAir/temperature>).

<insideAir/temp>t = 1

N1 = <outsideAir/temp>t = 0

N2 = <insideAir/temp>t = 0

N4 = <insideAir/temp>t = 1 – f(N1, N2, N3)

N3 = <heater/state>t = 0

t = 0

t = 1

Fig. 2. Computing noise terms using the causal mechanism f

To compute the contribution of each noise feature to our outlying value,
Janzing et al. [3] use Shapley values. To do so, we need to describe our outly-
ing observation of <insideAir/temperature> as a function of all associated noise
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features. We implemented the noise-dependent function in a recursive and lo-
calized manner using the RDF graph (see Algorithm 1). For the Incubator this
function is <insideAir/temp>t=1 = f(Nparents)+N4 (see Figure 2) with causal
mechanism f . Noise terms with high contributions are assumed to be the root
causes of the outlier. As visualized in Figure 2), four noise terms are potential
root causes for the outlier on <insideAir/temperature> at the investigated time
t = 1.

Algorithm 1: Localized, Recursive Noise-dependent Function

Data: Target Node T , Noise Samples N , RDF Graph G
Result: Prediction d for Target Node T based on Noise Samples
Function NoiseDependentFunction(T):

parents = G.queryParents(T );
if len(parents) == 0 then

return N [T ];
else

model = G.queryModel(T );
input = [NoiseDependentFunction(p) for p in parents];
return N [T ] +model.estimate(input);

end

4 Conclusion

We showed causal inference on causal annotated SOSA observations. The lim-
itations of this approach include that the causal structure needs to be known.
A wrongful causal structure, therefore, could lead to wrong conclusions. Our fu-
ture research includes studying how semantically annotated observations under
interventions may help to create causal insights.
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