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Abstract. Ontology Matching (OM), is a critical task in knowledge
integration, where aligning heterogeneous ontologies facilitates data in-
teroperability and knowledge sharing. Traditional OM systems often rely
on expert knowledge or predictive models, with limited exploration of the
potential of Large Language Models (LLMs). We present the LLMs4OM
framework, a novel approach to evaluate the effectiveness of LLMs in
OM tasks. This framework utilizes two modules for retrieval and match-
ing, respectively, enhanced by zero-shot prompting across three ontology
representations: concept, concept-parent, and concept-children. Through
comprehensive evaluations using 20 OM datasets from various domains,
we demonstrate that LLMs, under the LLMs4OM framework, can match
and even surpass the performance of traditional OM systems, particu-
larly in complex matching scenarios. Our results highlight the potential
of LLMs to significantly contribute to the field of OM.
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1 Introduction

In the dynamic field of information and data management, ensuring the inter-
operability and integration of varied knowledge systems is critical. Ontologies
play a key role in achieving semantic interoperability by providing a structured,
understandable framework for both humans and machines [31,44]. However, the
proliferation of new ontologies presents challenges in aligning them for seam-
less communication across different systems [34,51]. Ontology matching (OM)
emerges as a vital solution, automating the discovery of correspondences across
ontologies [10]. The emergence of Large Language Models (LLMs) in natural
language processing has revolutionized the traditional boundaries between hu-
man and machine understanding of language, making LLMs highly relevant for
OM tasks. Despite initial efforts to apply LLMs to OM [21,30], the rapid de-
velopment of these models calls for an in-depth exploration of their potential in
OM, which this study aims to provide, emphasizing the importance of OM and
the promising capabilities of LLMs in addressing its challenges.
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To pursue this objective, we present the LLMs4OM framework, which as-
sesses diverse LLMs across various tracks introduced within the Ontology Align-
ment Evaluation Initiative (OAEI) [40]. OM aims to map concepts between
source Csource ∈ Osource and target Ctarget ∈ Otarget ontologies. Formally, the
task is to identify for any Cs ∈ Csource, possible Ct ∈ Ctarget that (Cs, Ct, SCs≡Ct

),
where S ∈ [0, 1] represents the likelihood of equivalence Cs ≡ Ct [11].

An initial study using ChatGPT-4 [30], demonstrated the OM task via a
conversational, naive approach, where ontologies Osource and Otarget were fully
inputted into the LLM to solicit matchings. This approach, however, highlighted
two primary drawbacks: i) the limited context length LLMs can process, which
may be exceeded by larger ontologies, and ii) the increased likelihood of erro-
neous or ”hallucinated” responses due to the volume of information provided. To
address these, LLMs4OM employs a dual-module strategy based on Retrieval-
Augmented Generation (RAG) [26]: first, using retrieval model for candidate
selection for a given query Csource from a knowledge base of Ctarget, and then
LLM-based matching, in a second module, for finer accuracy. This approach
mitigates the limitations of direct LLM prompting by optimizing for the spe-
cific challenges of OM, demonstrating a strategic advancement in leveraging
LLMs for OM. In our study using the LLMs4OM framework, we conduct ex-
tensive evaluations, beginning with the RAG module where we explore four
retrieval methods: TFIDF [38], sentence-BERT [37], SPECTER2 [42], and Ope-
nAI text-embedding-ada [33]. Subsequently, within the LLM module, we pair
these retrieval techniques with seven state-of-the-art LLMs: LLaMA-2 [46], GPT-
3.5 [32], Mistral [22], Vicuna [52], MPT [45], Falcon [2], and Mamba [16], to assess
their combined effectiveness. Furthermore, detailed large-scale experiments are
framed based on three main research questions (RQs). RQ1: What impact do
the three concept representations (concept, concept-parent, concept-children),
respectively have on improving matching efficacy? RQ2: For the RAG module,
which retriever performs best per track? (RQ2.1 ) Additionally, how does recall
vary in the retrieval module across our different retrieval techniques employed?
(RQ2.2 )RQ3: Which LLM performs best per track? (RQ3.1 ) Furthermore, how
does the performance of various LLMs differ across the three concept represen-
tations for the OM tracks? (RQ3.2 ).

This study presents and empirical evaluation of LLMs across six tracks of the
OAEI campaign, covering 20 datasets. The primary contributions of this paper
are threefold: 1) Introduction of the LLMs4OM, an end-to-end framework that
utilizes LLMs for OM; 2) A thorough empirical evaluation of seven state-of-the-
art domain-independent LLMs and four retrieval models for their suitability to
the various OM tasks; and 3) The source code implementation of the LLMs4OM
framework released in here https://github.com/HamedBabaei/LLMs4OM.

2 Related Work

Ontology matching, a well-explored research area, has seen diverse method-
ologies, from traditional techniques [1,13,23,39,41] to recent transformer-based

https://oaei.ontologymatching.org/
https://github.com/HamedBabaei/LLMs4OM


LLMs4OM 3

methods [4,9,14,15,18,19,21,30,35,43,47,48], each contributing to advancements
in the field. Despite the proven effectiveness of conventional approaches, this
work focuses on classifying ontology matching systems, especially those utilizing
transformers [49], into three categories based on their research goals: unsuper-
vised learning, supervised learning, and LLM-based approaches.

Unsupervised learning methods in OM often use embeddings for similarity
assessments. Techniques such as TTEXTO [35], PropMatch [43], AMD [47],
and Matcha [14] primarily leverage BERT [7] variants (e.g., RoBERTa [28],
sentence-BERT) to generate ontology embeddings for these calculations. Ad-
ditionally, some methods combine transformer models with multiple representa-
tions: TEXTO integrates GloVe [36] with BERT, AMD pairs knowledge graph
embeddings with BERT, GraphMatcher [9] combines universal sentence en-
coder [5] with graph learning techniques, and PropMatch uses sentence-BERT
with TFIDF for enhanced matching accuracy. Supervised OM methods predom-
inantly fine-tune transformer models. Truveta Mapper [4] utilizes ByT5 [50] on
the Bio-ML track, employing a sequence-to-sequence approach. LaKERMap [48]
focuses on domain-specific tuning with Bio-ClinicalBERT [3]. SORBETmatcher
[15] combines BERT with random walks and regression loss for ontology em-
beddings. Matcha-DL [14] uses sentence-BERT in a semi-supervised setup with
a dense network for candidate ranking. BERTMap [18] integrates unsupervised
and semi-supervised strategies by initially fine-tuning BERT on ontology texts,
and then refining mappings based on ontology structure.

Research on larger parameter models [19,21,30] reveals significant strategies
for ontology matching (OM). [30] leverages prompt templates with LLMs to in-
put source and target ontologies, showcasing OM potential. OLaLa [21] utilizes
LLaMA-2 models and BERT retrievers to extract top-k matches from target on-
tologies for LLM prompts, refining final alignments with a precision matcher and
filters. LLMap [19] investigates Flan-T5 [6] and GPT-3.5’s zero-shot capabilities,
focusing on concept labels and structural contexts.

3 LLMs4OM – Methodological Framework

The LLMs4OM framework offers a RAG approach within various LLMs for OM.
LLMs4OM uses Osource as query Q(Osource) to retrieve possible matches for any
Cs ∈ Csource from Ctarget ∈ Otarget. Where, Ctarget is stored in the knowledge
base KB(Otarget). Later, Cs and obtained Ct ∈ Ctarget are used to query the
LLM to check whether the (Cs, Ct) pair is a match. As shown in Figure 1, the
framework comprises four main steps: 1) Concept representation, 2) Retriever
model, 3) LLM, and 4) Post-processing.
1) Concept representation. Within this module, we process the ontologies,
to extract the child, parent, and concept-specific representations of ontology
elements. These representations will be utilized to generate three distinct in-
put representations: i) Concept (C), a foundational representation that encap-
sulates the core characteristics of a standalone concept within the ontology, ii)
Concept-Parent (CP ), extending beyond individual concepts, this representation
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Fig. 1. Overview on LLMs4OM as an end-to-end framework for OM.

establishes the hierarchical relationships by incorporating information about the
parent concepts, and iii) Concept-Children (CC) complementing the CP rep-
resentation which focuses on the descendants of a given concept. These variant
representations ensure a comprehensive understanding of ontologies, capturing
both individual concepts and their hierarchical relationships, thus supporting
the complete nature of ontologies. Subsequently, minor preprocessing is carried
out to acquire clean textual data by converting representations to lowercase and
removing punctuation.
2) Retriever model. First, an embedding extractor model operates by ex-
tracting embeddings for Ctarget ∈ Otarget and forming an embedding knowledge
base for all Ctarget. Next, for a given Cs ∈ Csource, using the embedding extrac-
tor model, a Cs embedding is generated to calculate cosine similarity across all
Ctarget, to identify topk most similar candidates for alignments. The retrieval
model will result in a {(Cs, Ct1), ..., (Cs, Ctk)} pairs with similarity score of Sir

per pair. For other input representations, C can be substituted with CC to in-
clude children or with CP to integrate the parent of C within the representations
for the retrieval model.
3) LLM. Using obtained {(Cs, Ct1), ..., (Cs, Ctk)} pairs from the retrieval model,
each pair is verbalized as text and replaced in the prompt template to input
LLMs. Subsequently, employing the LLM prompting technique [27], inputs are
categorized into ”yes” and ”no” classes using label words such as yes/true/right
for the ”yes” class and no/false/wrong for the ”no” class. Later, the confidence
score of Sllm is derived from the probabilities assigned to the ”yes” and ”no”
classes label words corresponding to the obtained pairs. The following prompt
template is designed to use C, CC, or CP representation of ontology concepts.

Classify if two concepts refer to the same real-world entity or not (answer only
yes or no).\n### First concept:\n{Cs}\n[Parents|Children]: {CP |CC}\n###
Second concept:\n{Ct}\n [Parents|Children]: {CP |CC}\n### Answer:

Where in the template {Cs} and {Ct} are placeholders for pair concepts. The
notation ”[Parents|Children]: {CP |CC}” offers flexibility in representing ontology
concepts, allowing for the inclusion of either parent or children concepts via CP
and CC representations.
4) Post-processing. After obtaining the retrieval model similarity score of Sir

and LLM’s confidence scores of Sllm for ”yes” and ”no” classes, we conducted hy-
brid post-processing to obtain final pairs that match among (Cs, Ct1), ..., (Cs, Ctk)).
The hybrid post-processing involves three steps:
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1. Confidence-driven filtering by LLM : First, predicted pairs with the ”no”
class are disregarded. Then, pairs with Sllm > 0.7 for the ”yes” class are
retained.

2. The high precision matcher : This step applies to the retrieval model similar-
ity score using Sir > 0.9. The resulting output consists of exact matches.

3. Cardinality-based filtering : Implemented to ensure uniqueness in matches per
Csource or Ctarget concept. This step resolves any potential ambiguity arising
from multiple pairs with identical source or target concepts, although such
cases are not present in the ground truth data.

This yields (Cs, Ct, Sir, Sllm) as the set matching between concepts.

4 LLMs4OM – Ontology Matching Evaluations

This section delves into empirically validating LLMs4OM by employing preci-
sion, recall, and F1-score metrics. Experimental datasets, models, and results
are presented in the following.

Evaluation Datasets – OAEI Tracks & Tasks. We selected six tracks
from the OAEI campaign, covering diverse domains, and utilized three setups,
i.e. concept, concept-children, and concept-parent, for our experiment. These
configurations aim to identify the most effective ontology representation for
OM, particularly focusing on the equivalence matching problem. The chosen
tracks includes: Anatomy) Anatomy [8] (Mouse-Human), biodiv) Biodiversity
and Ecology [24] (8 tasks), Phenotype) Disease and Phenotype [17] (DOID-
ORDO and HP-MP), CommonKG) Common Knowledge Graphs [12] (Nell-
DBpedia and YAGO-Wikidata), Bio-ML) Biomedical Machine Learning [20]
(5 tasks), and MSE) Material Sciences and Engineering [29] (MI-EMMO and
MI-MatOnto) OAEI tracks which resulted in 20 tasks/datasets.

Evaluation Models – Retrievers & LLMs. As already introduced earlier,
in this work, this study evaluates 7 state-of-the-art LLMs across 4 retriever
models using the LLMs4OM framework. We assess retrieval models including
TFIDF [38], sentence-BERT [37], SPECTER2 [42], and OpenAI text-embedding-
ada [33]. Afterward, we combine these with LLMs (number of parameters writ-
ten in parenthesis) such as LLaMA-2 (7B) [46], GPT-3.5 (174B) [32], Mis-
tral (7B) [22], Vicuna (7B) [52], MPT (7B) [45], Falcon (7B) [2], and Mamba
(2.8B) [16] to measure their effectiveness for OM.

LLMs4OM Results. For each track, retriever models with topk = 5 are eval-
uated across proposed concept representations and results are reported in Fig-
ure 2. The assessment includes 7 LLMs with C, CC, and CP input representa-
tions, along with retrievers like text-embedding-ada and sentence-BERT, detailed
in Table 1. Approximately 50 runs per dataset were conducted, providing foun-
dational results for further analysis (the complete results are indicated in sup-
plementary material). We focus on zero-shot evaluations of LLMs and retrieval
models in addressing our research questions.
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Fig. 2. Comparing retrieval models using recall and topk = 5.

RQ1: What impact do the three concept representations, respectively
have on improving matching efficacy? We address this question by analyz-
ing the findings presented in Figure 2, demonstrating the superiority of the C
representation across all 20 tasks for retrieval models using the proposed method.
Additionally, in Table 1, we find C excelling in 6 tasks, while CP outperforms in 9
tasks. Notably, based on observation of results in Figure 2, SNOMED-FMA tasks
from Bio-ML show high sensitivity to input representation. Furthermore, the
inclusion of information about concepts, i.e. parents or children, shifts represen-
tations towards other concepts within the ontology. However, such information
proves to be valuable for LLMs in enhancing their understanding of concepts, as
evidenced in the results.

RQ2.1. [Retrieval module] Which retriever performs best per track?
Given the results in Figure 2, we analyze this question. Across tracks Anatomy,
Biodiv, Phenotype, CommonKG, and Bio-ML, OpenAI text-embedding-ada
consistently outperforms. However, inMSE track tasks, sentence-BERT emerges
as the standout performer. Specifically, for the challenging MI-MatOnto task,
sentence-BERT achieves a 49% recall. Combining top retrievers, text-embedding-
ada and sentence-BERT, with LLMs, as shown in Table 1, highlights sentence-
BERT ’s suitability for Phenotype and MSE tracks, while text-embedding-ada
excels in the remaining 4 tracks. These findings underscore the importance of se-
lecting appropriate retrievers tailored to specific task requirements in LLMs4OM.

RQ2.2: [Retrieval module] How does recall vary in the retrieval mod-
ule across our different retrieval techniques employed? We investigate
this question by comparing retriever models across different values of topk ∈
[5, 10, 20]. On average, for topk = 5, the retrieval models achieve a recall of
82.09%, increasing to 84.66% for topk = 10, and further to 86.82% for topk = 20.
Specifically, given the results in Figure 2, when considering topk = 5, the text-
embedding-ada retriever achieves a recall of 90.88%, followed by sentence-BERT
with 86.09%, SPECTER2 with 82.10%, and TFIDF with 75.15%, highlighting
the superior performance of text-embedding-ada and sentence-BERT. However,
it’s important to note that higher values of topk lead to increased time complex-
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Table 1. Zero-shot performance comparison across 20 tasks with 7 LLMs, 3 concept
representations (C, CP, CC), and 2 retriever models. Bold indicates LLM4OM outper-
forming OAEI 2023 OM systems. ”OAEI” column shows the top F1-scores from OAEI.

Track Tasks Prec Rec F1 Best Model OAEI

Anatomy Mouse-Human 90.82 87.46 89.11 GPT-3.5(C)+Ada 94.10

Biodiv

ENVO-SWEET 59.00 51.67 55.09 Mistral(C)+Ada 71.40
FISH-ZOOPLANKTON 100 80.00 88.88 LLaMA-2(C)+Ada 92.80
ALGAE-ZOOBENTHOS 100 38.88 56.00 Mistral(C)+Ada 50.00
TAXR-NCBI(Bacteria) 67.96 99.42 80.74 GPT-3.5(CP)+Ada 74.80
TAXR-NCBI(Chromista) 69.87 98.07 81.61 GPT-3.5(CP)+Ada 77.30
TAXR-NCBI(Fungi) 86.97 99.08 99.63 GPT-3.5(CP)+Ada 89.10
TAXR-NCBI(Plantae) 82.59 96.34 88.94 GPT-3.5(CP)+Ada 86.60
TAXR-NCBI(Protozoa) 86.06 98.59 91.90 GPT-3.5(CP)+Ada 85.70

Phenotype
DOID-ORDO 85.79 94.26 89.83 Mistral(CP)+BERT 75.50
HP-MP 76.67 95.40 85.01 Mistral(CP)+BERT 81.80

CommonKG
Nell-DBpedia 100 89.14 94.26 GPT-3.5(C)+Ada 96.00
YAGO-Wikidata 100 85.52 92.19 LLaMA-2(C)+Ada 94.00

Bio-ML

NCIT-DOID (disease) 86.19 80.06 83.01 GPT-3.5(C)+Ada 90.80
OMIM-ORDO (disease) 71.80 57.96 64.14 GPT-3.5(CC)+Ada 71.50
SNOMED-FMA(body) 21.12 32.60 25.64 GPT-3.5(CP)+Ada 78.50
SNOMED-NCIT(neoplas) 46.96 52.96 49.47 GPT-3.5(CP)+Ada 77.10
SNOMED-NCIT(pharm) 81.84 58.19 68.02 GPT-3.5(CC)+Ada 75.20

MSE
MI-EMMO 96.66 92.06 94.30 LLaMA-2(CC)+BERT 91.80
MI-MatOnto 89.70 20.19 32.97 MPT(C)+BERT 33.90

ity and longer waiting times. Consequently, we may opt to sacrifice a 4% average
recall with topk = 20 in exchange for reduced waiting times using topk = 5.
RQ3.1: [LLM module] Which LLM performs best per track? We exam-
ine this question given the results in Table 1. The Best Model column in the
table showcases the top-performing models, starting with GPT-3.5, followed by
Mistral-7B, LLaMA-2-7B, and finally MPT-7B among the 7 LLMs. The sum-
mary of best model results concerning OM systems proposed in OAEI 2023 [40]
using F1-score are as follows: for MI-EMMO LLaMA-2-7B 94.30% > Matcha
91.8% [14], for HP-MP Mistral-7B 85.01% > LogMap 81.8% [23], for DOID-
ORDO Mistral-7B 89.93% > AML 75.5% [13], for ALGAE-ZOOBENTHOS
Mistral-7B 56.00% > OLaLa 50.0% [21], for TAXR-NCBI(Bacteria) GPT-3.5
80.74% > LogMapLt 77.3% [23], for TAXR-NCBI(Fungi) GPT-3.5 99.63% >
OLaLa 89.9% [21], for TAXR-NCBI(Plantae) GPT-3.5 88.94% > OLaLa 86.6%
[21], and for TAXR-NCBI(Protozoa) GPT-3.5 91.90% > OLaLa 85.7% [21].

RQ3.2: [LLM module] How does the performance of various LLMs
differ across the three concept representations for the OM tracks? Us-
ing results from Table 1, we find LLMs perform better with additional contexts
like parents or children, as seen in tasks across Biodiv, Phenotype, and Bio-
ML tracks. In Biodiv, CP consistently boosts LLM performance, especially in
TAXR-NCBI tasks. Similarly, Phenotype tasks show improved results with
CP representations, notably in DOID-ORDO (89.83%) and HP-MP (85.01%).
However, Bio-ML tasks exhibit mixed outcomes; some like NCIT-DOID perform
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well (83.01%) with C representation, while others like SNOMED-FMA (25.64%)
struggle even with CP representation. In MSE, tasks vary greatly; for example,
MI-EMMO achieves 94.30% success with LLaMA-2-7B and CC representation.
This highlights the importance of selecting the right model architecture and
contextual representation for each task. Overall, this analysis stresses the sig-
nificance of context in LLMs across diverse domains, emphasizing the need for
tailored approaches based on task specifics.

5 Discussion

Benefits of using our RAG technique for OM. Integrating retrieval with
LLMs yields benefits. Querying LLM with all pairs initially led to impractical
O(n2) time complexity, particularly with larger datasets. However, integrating
retrieval reduces complexity to linear O(kn), enabling faster processing while
preserving LLM-generated confidence scores. Additionally, providing all ontolo-
gies at once to the model, as seen in [30], results in mixed outputs, posing
challenges in computing matching scores and increasing the risk of high halluci-
nation, especially with larger ontologies.
Low performance on the Bio-ML track. LLMs4OM showed low perfor-
mance compared to traditional methods across the Bio-ML track tasks. Ana-
lyzing their performance with two retrievers, we found an average F1-score of
53% with text-embedding-ada and around 44% with sentence-BERT. Despite
strong retriever performance in candidate retrieval (see Figure 2), LLMs’ overall
performance remains low. There is a general under-performance on this track
when LLM solutions have been used, and given the low performance, we tested
domain-specific LLM i.e. BioMistral-7B [25] and we obtained the following re-
sults (* refers to the best model result from Table 1). NCIT-ORDO 69.04% <
83.01%∗, OMIM-ORDO 57.84% < 64.14%∗, SNOMED-FMA 33.98% > 25.64%∗,
SNOMED-NCIT(neoplas) 46.24% > 49.47%∗, and SNOMED-NCIT(pharm)
62.00% < 68.02%∗. The low performance on all the tasks even with domain-
specific LLM, showed a need for a different approach for the Bio-ML track.

6 Conclusion

The proposed LLMs4OM framework highlights the efficacy of LLMs in OM,
specifically in aligning diverse ontologies for knowledge engineering. By rigor-
ously evaluating 20 tasks spanning different domains, our framework shows that
LLMs, when combined with retriever models and guided by zero-shot prompting
while utilizing C, CP , and CC representations, can surpass traditional OM sys-
tems in complex matching scenarios. These findings underscore the significant
potential of LLMs in OM, paving the way for further exploration.
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