
A Framework for Question Answering on
Knowledge Graphs Using Large Language Models

Caio Viktor S. Avila1, Marco A. Casanova2, and Vânia M.P.Vidal1

1 Federal University of Ceará, Fortaleza, Brazil 60440-900
caioviktor@alu.ufc.br,vvidal@lia.ufc.br

2 Department of Informatics, Pontifical Catholic University of Rio de Janeiro, Rio de
Janeiro, Brazil 22451-900
casanova@inf.puc-rio.br

Abstract. Currently, large language models (LLMs) are the state of the
art for pre-trained language models. LLMs have been applied to many
tasks, including question and answering over Knowledge Graphs (KGs)
and text-to-SPARQL, that is, the translation of Natural Language (NL)
questions to SPARQL queries. This paper introduces Auto-KGQA, an
autonomous domain-independent framework based on LLMs for text-to-
SPARQL. The framework uses as context, fragments of the KG, which
the LLM uses to translate the user’s NL question to a SPARQL query
on the KG. Finally, it generates a natural language response for the user,
based upon the result of the execution of SPARQL query over the KG.

Keywords: Question Answering · Knowledge Graph · Large Language
Model.

1 Introduction

Question Answering (QA) systems are computational systems that can answer
questions typically asked in Linguagem Natural (LN) [5]. Among the types of
QA systems, Knowledge Graph Question Answering (KGQA) systems stand out
for their ability to generate curated and deep responses. KGQA systems are QA
systems that are based on a Knowledge Graph (KG)[9].

Currently, Large Language Models (LLMs) are the state of the art for pre-
trained language models. LLMs achieve good results in tasks like question and
answering over KGs and text-to-SPARQL[2], which opens an opportunity to
develop KGQA systems based on LLMs [8]. However, for the LLM to be able to
generate SPARQL queries on a specific KG it is necessary that it has knowledge
about the vocabulary and structure of the KG being queried. A possible strategy
for passing on such knowledge could be passing the KG via prompt, exploiting
the LLM’s ability to learn with the context present in the prompt (in-context
learning) [3]. However, given the size limitation of the LLM prompt, passing the
entire KG proves to be unfeasible in real-world scenarios. Thus, fragments must
be selected, forming a sub-graph, relevant to the user’s original question to be
passed to the LLM, via prompt.



2 Avila. Caio et al.

This paper introduces Auto-KGQA, an autonomous domain-independent
framework based on LLMs for text-to-SPARQL. Given a KG K and a user’s
NL question Q, the framework selects fragments of the T-Box and A-Box of
K, providing these as contextual input for the Large Language Model (LLM).
Auto-KGQA proceeds to generate n potential SPARQL queries that interpret
Q, subsequently selecting the most suitable query S based on the outcomes de-
rived from executing these queries on K. Finally, it generates a natural language
response for the user, based upon the result of the execution of S over K. The
key feature of Auto-KGQA is its ability to select smaller KG fragments without
prior knowledge of the expected outcome, thus reducing the number of input
tokens to the LLM.

The remainder of this article is structured as follows. Section 2 covers re-
lated work. Section 3 introduces Auto-KGQA. Finally, Section 4 contains the
conclusions.

2 Related Work

An approach to translate NL queries to SPARQL, called SGPT, is proposed
in [7]. SGPT encodes a vector of linguistic embedding features, such as parts-
of-speech (POS) and the dependency tree, in addition to the corresponding
sub-graph of the question. Then, the embeddings are passed as training to a
Transformers model based on GPT-2 to generate the SPARQL query.

The Knowledge Solver (KSL) paradigm was proposed in [4] to teach LLMs to
fetch essential knowledge from external knowledge bases. In this approach, the
LLM receives as input question-and-answer pairs (of the multiple choice type),
where the LLM task is to learn to select the KG subgraph required to answer
the original NL question.

SPARQLGEN is a one-shot approach that generates SPARQL queries by en-
hancing LLMs with context in a single prompt[6]. The prompt includes the ques-
tion, an RDF subgraph needed for the query, and an example SPARQL query
for a different question. Subgraph selection for each question is done through
reverse engineering of expected correct SPARQL queries.

To the best of our knowledge, LLM-based approaches already receive a sub-
graph of the KG relevant to the question as input or use information from the
expected response to derive it. Therefore, this current work has the advantage of
being able to autonomously select the relevant sub-graph, given only the user’s
question.

3 Auto-KGQA

The framework3 is composed of six components: (1) Chat Web Interface, an in-
stant messenger web interface for sending and receiving messages to the system

3 https://github.com/CaioViktor/Auto-KGQA

https://github.com/CaioViktor/Auto-KGQA


Title Suppressed Due to Excessive Length 3

Fig. 1. Auto-KGQA framework

implemented in React; (2) Conversation API, question processing system acces-
sible via API in Flask Python; (3) Knowledge Graph Endpoint; (4) Resources
indexes, indices used to find references to KG resources in natural language ques-
tions; (5) Example dataset of queries collected during users interactions; and (6)
LLM API (ChatGPT by default).

Below is a brief description of the processes carried out in the framework
depicted in the Figure 1. A more detailed explanation and initial experiments of
the approach, can be found in [1].
Off-line stage. The offline stage receives the KG (T-Box and A-Box) as input
via a SPARQL endpoint and creates two indexes, used in the online stage to
find references to KG resources in the input question. The first index generates
mappings from labels of classes and properties to their URIs. The second index
generates mappings from A-Box (instances) resource labels to their URIs.

The indexes generated in this step can be of three types: (1) full-text search
engine, using the Whoosh; (2) Sentences vector embedding based, using FAISS
library; (3) DBpedia Spotlight, using the DBpediaAPI. The first two indices can
be used in any KG, both to index the T-box and the A-box. In turn, the third
party can only be used when performing queries on DBpedia, indexing only its
A-box.
On-line stage. Figure 1 shows the workflow followed during the online stage.
At this stage, the system uses the indexes created in the offline stage to find
references to KG resources present in the user’s question Qi (step 3). Then, for
each referenced resource, all its triples are recovered, along with those of their
neighbors up to depth 2 in the KG (step 4), building a set of Ti triples. Next, the
framework builds the Query Sub-graph (presented in more detail in the next
section), Gq, a subgraph of Ti that will be passed to LLM to build the SPARQL



4 Avila. Caio et al.

query . In the next step, a request is made to LLM to generate five translation
variations of Qi to SPARQL over Gq (step 5). For each valid query generated by
LLM, the system retrieves the result set from its execution on the KG endpoint
(step 6). Next, the LLM is asked to choose the SPARQL translation that best
represents the original query, also considering the previously obtained result sets
(step 7). Finally, the system asks LLM to generate the final response in NL based
on the SPARQL query and its result set selected in the previous step (step 8).
Query Sub-graph Construction. The selected triples, Ti, are filtered to re-
move triples irrelevant to the question Qi. For this, all triples of Ti are grouped
by subject and property , then, for each group, a single phrase will be generated
that represents a pseudo verbalization of these triples. The generated sentences
follows the structure “Subject verb complement”. The subject and verb will
be formed by the labels of the resources in the original triples, while the com-
plement will be a list of values representing the different RDF objects of each
triple of the group, separated by “commas”. When the RDF object is an RDF
resource, it will be represented in the sentence by its label, when it is a literal, it
will be used directly in the sentence. Next, the embedding vectors of all sentences
are computed, which will be used to construct a langchain’s faiss index, which
will be used to get the sentences closest to Qi, Sc. The triples associated with
Sc generate a set of triples relevant to the question, called Tr. The resources
referenced in Tr are then passed as input to run a steiner-tree algorithm on Ti,
to construct a connected graph Gc. Finally, the Ti triples are joined to the Gc
triples, generating the Query Sub-graph, a connected graph with the most rel-
evant triples for queries, called Gq. The Gq triples are then serialized to Turtle
RDF notation so that they can be passed as a string to the LLM.
Demonstration. The Figure 2 shows a demonstration of interaction via the
Auto-KGQA web interface (the image was originally one vertically). In this
demo, a KG described in [1] and available in the project’s github repository
is used, about which questions are asked in sequence about a specific resource
(someone called “John”). At the link4 you will find a video with a demonstration
in greater detail.

Fig. 2. Auto-KGQA interface demonstration.

4 https://youtu.be/GFSHySDitzU

https://youtu.be/GFSHySDitzU


Title Suppressed Due to Excessive Length 5

4 Conclusions

This paper introduced Auto-KGQA, an autonomous domain-independent frame-
work based on LLMs for text-to-SPARQL. The main goal of Auto-KGQA is the
selection of smaller KG fragments thereby reducing the number of tokens passed
as input to the LLM. Experiments with Auto-KGQA suggest that the framework
achieved this goal, without sacrificing performance.

Future work includes experiments using opensource LLMs in place of Ope-
nAI’s ChatGPT, as well as using a RAG engine to utilize examples acquired via
user feedback to improve system performance.

Acknowledgment

This work was partly funded by FAPERJ under grants E-26/200.834/2021, by
CAPES under grant 88881.134081/2016-01 and 88882.164913/2010-01, and by
CNPq under grant 305.587/2021-8.

References

1. Avila, C.V.S., Vidal, V.M., Franco, W., Casanova, M.A.: Experiments with text-to-
sparql based on chatgpt. In: 2024 IEEE 18th International Conference on Semantic
Computing (ICSC). pp. 277–284. IEEE (2024)

2. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. Advances in neural information processing systems 33, 1877–1901 (2020)

3. Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B., Sun, X., Xu, J., Sui, Z.: A
survey for in-context learning. arXiv preprint arXiv:2301.00234 (2022)

4. Feng, C., Zhang, X., Fei, Z.: Knowledge solver: Teaching llms to search for domain
knowledge from knowledge graphs. arXiv preprint arXiv:2309.03118 (2023)

5. Hirschman, L., Gaizauskas, R.: Natural language question answering: the view from
here. natural language engineering 7(4), 275–300 (2001)

6. Kovriguina, L., et al.: SPARQLGEN: one-shot prompt-based approach for SPARQL
query generation. In: Proc. of the Posters and Demo Track of the 19th International
Conference on Semantic Systems, Leipzing, Germany, September 20 to 22, 2023.
CEUR Workshop Proceedings, vol. 3526. CEUR-WS.org (2023), https://ceur-ws.
org/Vol-3526/paper-08.pdf

7. Rony, M.R.A.H., Kumar, U., Teucher, R., Kovriguina, L., Lehmann, J.: Sgpt: a
generative approach for sparql query generation from natural language questions.
IEEE Access 10, 70712–70723 (2022)

8. Tan, Y., Min, D., Li, Y., Li, W., Hu, N., Chen, Y., Qi, G.: Can chatgpt replace
traditional kbqa models? an in-depth analysis of the question answering performance
of the gpt llm family. In: International Semantic Web Conference. pp. 348–367.
Springer (2023)

9. Yani, M., Krisnadhi, A.A.: Challenges, techniques, and trends of simple knowledge
graph question answering: a survey. Information 12(7), 271 (2021)

https://ceur-ws.org/Vol-3526/paper-08.pdf
https://ceur-ws.org/Vol-3526/paper-08.pdf

	A Framework for Question Answering on Knowledge Graphs Using Large Language Models

