
KinGVisher – Knowledge Graph Visualizer

Andreas Both1,2, Aleksandr Perevalov1, and Aleksandr Gashkov1

1 Leipzig University of Applied Sciences, Leipzig, Germany
2 DATEV eG, Nuremberg, Germany

Abstract. Knowledge Graphs rely on conceptional knowledge (TBox)
and concrete data instances (ABox). Both types of statements are repre-
sented by RDF triples, hence, they are located in the same data storage.
As this is an advantage from the aspect of generalization, it might become
difficult to distinguish between the purpose of the triples when exploring
a knowledge graph. Additionally, the success of knowledge graphs leads to
larger data sets that might make it also harder to identify and recognize
the information of interest, its connections, and patterns. KinGVisher
was designed and developed as a visual explorer for knowledge graphs,
providing automatic graph layouts and supporting users in creating a
clear view of the knowledge graph. We publish this as a full-fledged,
open-sourced web application online, which is freely available to all users.

Keywords: Knowledge Graphs · Data Visualization · Graph Visualiza-
tion · Data Exploration

1 Introduction

Visualizations are useful and necessary to improve the accessibility and under-
standability of any data. This is particularly the case when dealing with large
amounts of data, for instance, RDF knowledge graphs (KGs), in which distri-
bution, differentiation, and stored content are constantly growing. This is not
only the case for the general-domain KGs (e.g., DBpedia [1] and Wikidata [7]),
but also for the domain-specific ones, as their structures are often difficult to
understand. However, the advantage of linked data, which lies in reusing exist-
ing vocabularies and creating many instances of the same classes, might become
problematic when many triples contain the same resource, and therefore a vi-
sualization might become heavily centralized (e.g., in DBpedia, dbo:Place is
currently part of 804796 triples) or tightly packed. In turn, this may affect re-
source consumption and efficiency, especially if the visualizations are created in
a web browser. Based on this observation, there is a need for a convenient KG
visualization tool easily accessible to its users. We set the following requirements
for such a tool: (1) The data in a KG must be filterable so that the number and
both expected resources and unexpected resources can be defined; (2) A visual-
ization of a KG needs to provide access to layout configurations, s.t., users can
adapt to many different scenarios; (3) A visualization needs to be enabled to
work with large knowledge graphs (e.g., DBpedia or Wikidata). Additionally, for
the sake of applicability and standardization, the tool should use only SPARQL
to interact with a KG.



2 Andreas Both, Aleksandr Perevalov, Aleksandr Gashkov

In this work, we introduce KinGVisher – a web application for efficient KG
visualizations that supports the aforementioned requirements and enables users
to dive into the data like a Kingfisher3. We release our tool as a full-fledged web
application, which is freely available to all users online4.

Several implementations exist dedicated to the visualizations of KGs and
linked data. For example, work by Kerdjoudj et al. [5], Lohmann et al. [6],
Ghosh [3] et al., the non-dynamic UML-styled visualization OWLGrEd [2], the
domain-specific SNIK Graph [4], or a KG explorer by the Zazuko company [8].
In contrast to these approaches, we favor a dynamic view of the KG’s data that
can be filtered and searched interactively (and would not focus on the TBox
visualization). Therefore, we define the following features to let the users stay
in control of their visualizations: Whitelist properties – a list of properties of the
knowledge graph can be defined that only should be shown in the visualization,
Blacklist properties – a list of properties of the knowledge graph can be defined
that should not be shown in the visualization, and Important resources – a list
of resources of the knowledge graph that has to be part of the visualization, i.e.,
they are used as a starting point of the exploration.

As our approach is using SPARQL only, the exploration of a KG is to be
done iteratively (in particular, if users have defined important resources), which
is done by creating SPARQL queries based on previously discovered resources.

2 Demonstration of KinGVisher

Our demonstrator (cf. Figure 1) provides the option of connecting to any public
SPARQL endpoint and optionally defining a specific graph (not required for
Wikidata or DBpedia, but common while using triplestores like Stardog5) 1 of
which the data should be evaluated. A core attribute is the user-defined number
of maximal edges 2 to keep the number of visualized triples within reasonable
limits. Several visualization parameters are provided for directly controlling the
layout for the current data 3 . Moreover, several non-standard visualization
configuration parameters are provided 4 :
– Show resource labels: in case of being activated, no labels are shown in the

visualization to reduce the number of rendered elements.
– Hierarchical layout: might improve the rendering of currently selected sub-

graphs with chains of connected edges (i.e., high depth).
– Split type nodes: while being activated, for all triples of the form :a rdf:type

?type, the type nodes (?type) are intentionally rendered separately as it
might lead otherwise to a centralization around types nodes.

– Show visualization options: This will provide an additional control panel (be-
low the visualization) for defining parameters of the used rendering to create
customized visualizations. All parameters of the renderer are provided here
for individual adjustments by users (e.g., for solving rendering problems).

3 cf. https://en.wikipedia.org/wiki/Kingfisher
4 https://wse-research.org/kingvisher/
5 https://www.stardog.com/

https://en.wikipedia.org/wiki/Kingfisher
https://wse-research.org/kingvisher/
https://www.stardog.com/


KinGVisher – Knowledge Graph Visualizer 3

1

2

3

4

5

6

Fig. 1: Screenshot of the KinGVisher UI using the DBpedia SPARQL endpoint.

Additionally, the definition of blacklist (s.t., users can remove unwanted prop-
erties that might pollute the graph visualization) and whitelist properties (s.t.,
users can focus on just a limited set of properties) is possible 5 . It is worth
mentioning here that it is also possible to define specific, “important” resources
that should always be included in the visualization. In this case, the knowledge
graph is searched iteratively (using SPARQL) so that connections between these
resources can be determined and displayed. These nodes of the visualization are
colorized using solid blue. All other nodes are colorized by a shade of green de-
pending on the maximum calculated from the input degree and output degree
of the node, i.e., the more important nodes are displayed in a darker color (s.t.,
users can identify the well-connected nodes easily).

The internal process is made transparent by providing the used SPARQL
queries 6 , a short statistics of the found properties is shown (that can be fold-
out to see the ranking of the properties by appearance in the currently shown
sub-graph), as well as the ingoing and outgoing edges of a (clicked) node.

Note, that the performance is highly dependent on the responsiveness of
the SPARQL endpoint as – for the sake of general applicability – only SPARQL
queries are used to retrieve data. A rudimentary cache has also been integrated to
minimize the triggered workload on the SPARQL endpoint which is particularly
speeding up the runtime regarding very large knowledge graphs.

Other useful functionalities include the ability to export the image of the
rendered Knowledge Graph as a PNG file and to share the current configuration
via a URI.



4 Andreas Both, Aleksandr Perevalov, Aleksandr Gashkov

The implementation was done using the Python library Streamlit6 that pro-
vides an integrated technology stack for frontend and backend while serving as
a bridge between Python and the React7 library (JavaScript/TypeScript) to
generate a

The application is available as an online demo8 and pre-bundled as Docker
images published on Dockerhub9 for free usage. The source code is available10

on GitHub and is published under the MIT open-source license.

3 Conclusions

In this paper, we presented KinGVisher – a web-based Knowledge Graph Visu-
alizer – that can interact with any available SPARQL endpoint. Our demonstra-
tor serves to help users interactively visualize and explore knowledge graphs. In
contrast to other visualization tools, our implementation is by design capable
of working with data (iteratively) retrieved from very large knowledge graphs.
Due to the challenges of creating visualizations for (large) knowledge graphs, our
tool offers many configuration options to put users in control (e.g., while allow-
ing them to manipulate the complete configuration parameters). Many of these
options were never introduced in other tools. Hence, we assume several benefits
for the research community, e.g., while working with large knowledge graphs
where filtering resources and properties is helpful, or for better understanding
the patterns and data available in the context of particular data artifacts of a
given knowledge graph.

Acknowledgments This work has been supported in part by the German
ministry BMWi under grant 16DTM107B (ASAGuR) and a research project of
ITZBund (Germany): “Entwicklung und Erforschung von IT-basierten Lösun-
gen im Rahmen des ChatBot-Frameworks des Bundes (Question-Answering-
Komponenten zur Erweiterung des ChatBot-Frameworks)”.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
A nucleus for a web of open data. In: International Semantic Web Conference. pp.
722–735. Springer (2007). https://doi.org/10.1007/978-3-540-76298-0 52

2. Čerāns, K., Ovčiņņikova, J., Liepiņš, R., Grasmanis, M.: Extensible visualiza-
tions of ontologies in OWLGrEd. In: Hitzler, P., Kirrane, S., Hartig, O., de Boer,
V., Vidal, M.E., Maleshkova, M., Schlobach, S., Hammar, K., Lasierra, N.,
Stadtmüller, S., Hose, K., Verborgh, R. (eds.) The Semantic Web: ESWC 2019
Satellite Events. pp. 191–196. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-32327-1 38

6 https://streamlit.io/
7 https://react.dev/
8 https://wse-research.org/kingvisher-knowledge-graph-visualizer/
9 https://hub.docker.com/r/wseresearch/knowledge-graph-visualizer

10 https://github.com/WSE-research/KinGVisher-Knowledge-Graph-Visualizer

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-030-32327-1_38
https://streamlit.io/
https://react.dev/
https://wse-research.org/kingvisher-knowledge-graph-visualizer/
https://hub.docker.com/r/wseresearch/knowledge-graph-visualizer
https://github.com/WSE-research/KinGVisher-Knowledge-Graph-Visualizer


KinGVisher – Knowledge Graph Visualizer 5

3. Ghosh, D., Rajabi, E.: KG-visual: a tool for visualizing RDF knowledge graphs. In:
Research Conference on Metadata and Semantics Research. pp. 126–136. Springer
(2021). https://doi.org/10.1007/978-3-030-98876-0 11

4. Jahn, F., Höffner, K., Schneider, B., Lörke, A., Pause, T., Ammenwerth, E., Winter,
A.: The SnIK graph: visualization of a medical informatics ontology. In: MEDINFO
2019: Health and Wellbeing e-Networks for All, pp. 1941–1942. IOS Press (2019).
https://doi.org/10.3233/SHTI190724

5. Kerdjoudj, F., Curé, O.: RDF knowledge graph visualization from a knowledge ex-
traction system. In: Joint Proceedings of the 1st International Workshop on Summa-
rizing and Presenting Entities and Ontologies and the 3rd International Workshop
on Human Semantic Web Interfaces (SumPre 2015, HSWI 2015) co-located with the
12th ESWC, 2015. CEUR Workshop Proceedings, vol. 1556. CEUR-WS.org (2015)

6. Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: Web-based visualiza-
tion of ontologies. In: Lambrix, P., Hyvönen, E., Blomqvist, E., Presutti, V., Qi,
G., Sattler, U., Ding, Y., Ghidini, C. (eds.) Knowledge Engineering and Knowl-
edge Management. pp. 154–158. Springer International Publishing, Cham (2015).
https://doi.org/10.1007/978-3-319-17966-7 21

7. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
munications of the ACM 57(10), 78–85 (2014). https://doi.org/10.1145/2629489

8. Zazuko: Graph Explorer (2024), https://github.com/zazuko/graph-explorer, ac-
cessed: 2024-03-01

https://doi.org/10.1007/978-3-030-98876-0_11
https://doi.org/10.3233/SHTI190724
https://doi.org/10.1007/978-3-319-17966-7_21
https://doi.org/10.1145/2629489
https://github.com/zazuko/graph-explorer

	KinGVisher – Knowledge Graph Visualizer

