
Data Search and Discovery in RDF Sources

Zoé Chevallier1,2, Zoubida Kedad1, Béatrice Finance1, and Frédéric Chaillan2

1 David Lab. University of Versailles Paris-Sclay, Versailles, France
firstname.lastname@uvsq.fr

2 Grand Paris Sud, Evry-Courcouronnes, France
{z.chevallier, f.chaillan}@grandparissud.fr

Abstract. The RDF data sources published on the Web represent an
unprecedented amount of knowledge. However, querying these sources to
extract the relevant information for some specific needs represented by a
target schema is a complex task, as the alignment between the target and
the source schemas might not be provided or may be incomplete. This
paper presents a system that aims to automatically populate the classes
of a target schema from RDF data sources by identifying candidate in-
stance patterns. This identification process relies on a semi-supervised
learning algorithm and the system automatically generates the SPARQL
queries that populate the target schema.

Keywords: RDF data sources · Target Schema Instantiation · SPARQL
Query Generation · Semi-supervised learning.

1 Introduction

The Web represents a huge space of available data from which various applica-
tions can extract meaningful knowledge. However, finding relevant data for some
specific need is not obvious, especially for irregular data sources. This problem
has been addressed by dataset discovery approaches [1, 3], which aim at discov-
ering the relevant datasets that could complement a given target dataset. These
approaches are designed for structured datasets.

Considering that the specific needs of an application are described by a target
schema, our problem is the identification and the extraction of relevant data to
populate this target schema. A similar problem is the one of mapping generation
which has been the subject of several works [2, 4], targeting relational or XML
data. Sacramento et al. [5] have addressed the problem of expressing an RDF
data source in the terms defined by an ontology, which consists in generating
a mapping between a source and this ontology. This requires the alignment
between the source schema and the target schema, which is not always provided.

In this paper, we present a system that identifies candidate instances from
RDF data sources to populate a given target schema. It relies on a semi-supervised
learning algorithm to extract candidate instance patterns from an RDF data
source and automatically generates the queries that extract these instances. This
paper is organized as follows. Section 2 presents the architecture of our system.
Section 3 details a use-case scenario, and section 4 presents some future works.

2 Z. Chevallier et al.

2 System Architecture

Fig. 1 depicts the architecture of our system. We consider that the target schema
is described in RDFS3 /OWL4 . The alignment between the source schemas and
the target schema can be exploited if they are available, but they are not required.

Fig. 1: The Data Search and Discovery System Architecture

Our system identifies in RDF sources candidate instance patterns in order to
populate the target schema. Each pattern is a property set which describes some
candidate instances in the data source. Given a candidate pattern, a SPARQL
Query is generated to retrieve all the candidate instances and automatically
populate the target schema.

We assume that each class C of the target schema is described by a set of
properties, Prop(C), such that Prop(C) = {p | < p, rdfs:domain,C >∈ T}. An
entity e in an RDF data source S is a resource that is neither a class, a property,
a literal, or a blank node; it is characterized by a set of properties, Prop(e), such
that: Prop(e) = {p | < e, p, ∗ >∈ S}.

A straightforward way to identify candidate instance patterns is to compute
the similarity between source entities and a target class C. If the similarity is
higher than a threshold, then Prop(e) is a candidate pattern for C. We refer to
this process as classification-based. If the output of some schema matching
tool is provided, and if a target class CT is equivalent to a source class CS , then
all the instances of CS are candidate instances for CT . We refer to this process
as matching-based instantiation.

However, these correspondences are not always provided. Besides, the schema
in RDF sources is only descriptive, and an instance can be characterized by a
property set that is different from the one defined in the schema for its class.
Therefore, new candidate instance patterns should be identified based on the
class description in the target schema, but also based on the candidate instance
patterns already identified for a class. To do so, we propose an approach based
on a semi-supervised learning algorithm [6] to identify candidate patterns.
3 https://www.w3.org/TR/rdf-schema/
4 https://www.w3.org/TR/owl-features/

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl-features/

Data Search and Discovery in RDF Sources 3

An entity which is similar to a candidate pattern already identified for a
class C could also be a candidate instance for C. We propose an approach that
iteratively computes the similarity between each entity and the candidate pat-
terns already identified. If the similarity between e and the candidate instance
patterns of C is above a predefined threshold, then Prop(e) is considered as a
candidate instance pattern for C. We introduce the notion of candidate instance
description that represent the patterns of candidate instances for a target class
C. It is such that:

D(C) = {Di | Di = Prop(e), e candidate instance of C} (1)
If D(C) = { D1, ..., Dn } is a set of candidate instance descriptions, the

similarity based on the instances is denoted SimI(e,D(C)), and is defined as
follows:

SimI(e,D(C)) = MAX1≤i≤n

(
|Prop(e) ∩ Di|
|Prop(e) ∪ Di|

)
(2)

The semi-supervised algorithm first computes candidate instance descrip-
tions using both the matching-based and classification-based approaches. For a
target class C, the similarity between each entity e and C, SimI is computed.
If the similarity is higher than a given threshold, then Prop(e) is a candidate
instance description of C. If new candidate instance descriptions are identified,
a new iteration is started. This identification process iterates until no more new
candidate instance descriptions are found.

Consider Di a candidate instance description of C such that Di = { p1, ...,
pn}. A SPARQL query is generated for Di in order to extract from the considered
dataset S all the entities characterized by a property set identical to Di, i.e., the
set in which each entity e is such that Prop(e) = Di.

The entities and their associated triples are extracted, and a type declaration
is defined for each of them stating that their corresponding type is C. This is
represented by adding the triple pattern <?e, rdf:type, C> in the basic graph
pattern.

In addition, if p is a property in Di, then the triple pattern <?e, p ?op> is
added to the basic graph pattern.

We implement an exclusion mechanism to filter out the entities which are
characterised by a superset of Di. We used a minus operator in the query that
exclude the entities that are described by properties which are not contained in
the description, i.e. <?e, ?prop, ?o>, where ?prop /∈ Di.

Fig. 2 depicts the SPARQL query generated for the description:
D(t:Person) = { firstname, lastname }.

3 Demonstration Scenario

Our system is implemented in Java, using Apache Jena. An online presentation of
the demonstration is available5. The demonstration will proceed in four phases:
5 https://mega.nz/folder/QK0lRSha#dSW_77ur0QBPNp7ff4_qXg

https://mega.nz/folder/QK0lRSha##dSW_77ur0QBPNp7ff4_qXg

4 Z. Chevallier et al.

Fig. 2: A Candidate Instance Description and the Corresponding SPARQL Query

1. Configuration. The process starts by selecting a project composed of a
RDFS/OWL target schema, RDF sources, and optionally a set of corre-
spondences between the target schema and the RDF sources. A graphical
representation of both the target schema and the data sources is presented.

2. Identification of Candidate Instance Descriptions. In this phase, we
will show the generation of candidate instance descriptions using the different
approaches. The candidate instance descriptions identified for each target
class will be presented as well as their provenance, i.e. the data source from
which they have been extracted. Moreover, a visualization tool allow the user
to highlight the candidate instances identified in the source.

3. Generation of SPARQL Queries. We will then demonstrate the query
generation process, and show the queries generated for each candidate in-
stance description and the execution result, such as the one depicted in Fig.3.

4. Comparison of the Candidate Instance Sets. In order to highlight the
quality of the semi-supervised approach, we will compare its resulting candi-
date instance sets with the ones extracted using a baseline method which con-
sists in extracting the candidate instance descriptions obtained using both
the matching-based approach and the classification-based approach.

4 Future Works

In future works, we will improve the query generation process in our data dis-
covery system by taking into account some constraints defined on the target
schema so as to extract only the source instances for which the constraints are
verified. These constraints will be expressed in SHACL6, and exploited during
query generation. We will also explore the possible ways of minimizing the num-
ber of generated queries by grouping the candidate instance descriptions that
share some properties before generating the queries.
6 https://www.w3.org/TR/shacl/

https://www.w3.org/TR/shacl/

Data Search and Discovery in RDF Sources 5

Fig. 3: A Screenshot of the Query Generated from a Candidate Description

References

1. Castro Fernandez, R., Abedjan, Z., Koko, F., Yuan, G., Madden, S., Stonebraker,
M.: Aurum: A Data Discovery System. In: 2018 IEEE 34th International Conference
on Data Engineering (ICDE). pp. 1001–1012. IEEE, Paris (Apr 2018)

2. Fagin, R., Haas, L.M., Hernandez, M., Miller, R.J., Popa, L., Velegrakis, Y.: Clio:
Schema Mapping Creation and Data Exchange | SpringerLink. In: Conceptual Mod-
eling: Foundations and Applications, Lecture Notes in Computer Science, vol. 5600,
pp. 198–236 (2009)

3. Koutras, C., Siachamis, G., Ionescu, A., Psarakis, K., Brons, J., Fragkoulis, M., Lofi,
C., Bonifati, A., Katsifodimos, A.: Valentine: Evaluating Matching Techniques for
Dataset Discovery. In: 2021 IEEE 37th International Conference on Data Engineer-
ing (ICDE). pp. 468–479 (Apr 2021)

4. Mazilu, L., Paton, N.W., Fernandes, A.A., Koehler, M.: Schema mapping generation
in the wild. Information Systems 104, 101904 (Feb 2022)

5. Sacramento, E.R., Vidal, V.M.P., de Macêdo, J.A.F., Lóscio, B.F., Lopes, F.L.R.,
Casanova, M.A.: Towards automatic generation of application ontologies. J. Inf.
Data Manag. 1(3), 535–550 (2010)

6. Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised meth-
ods. In: Proceedings of the 33rd annual meeting. Association for Computational
Linguistics, Cambridge, Massachusetts (1995)

	Data Search and Discovery in RDF Sources

