
Datatypes for Lists and Maps in RDF Literals

Olaf Hartig1,2⋆ , Gregory Todd Williams1, Michael Schmidt1, Ora Lassila1,
Carlos Manuel Lopez Enriquez1, and Bryan Thompson1

1 Amazon Neptune Team, Amazon Web Services, Seattle, WA, USA
2 Linköping University, Linköping, Sweden

Abstract. We present an approach to represent composite values (lists
and maps, in particular) as literals in RDF data, and to extend SPARQL
with features related to such literals. These extensions include an aggre-
gation function to produce these composite values, functions to operate
on these composite values in expressions, and a new operator to unfold
such composite values into their individual components. As resources
related to the approach, we provide two complete open source imple-
mentations, a formal specification, and a comprehensive test suite.

Keywords: Composite Datatypes, SPARQL Extension, JSON in RDF

1 Introduction

Composite datatypes (CDTs) enable the representation of complex, possibly
nested data structures such as lists, maps, and sets. A popular mechanism to
represent such complex values is JSON, which nowadays is commonly supported
as a built-in datatype in database systems, including in relational systems such
as MySQL and PostgreSQL. Similarly, in the graph database world, Property
Graph query languages such as Gremlin and openCypher include support for
CDTs such as lists, maps, and paths. Novel Web-related query languages such
as GraphQL also focus on composite JSON-like structures.

In all these cases, CDTs are included as first-class citizens within the (storage
or runtime) data model, and query languages offer built-in support for construct-
ing, accessing, and manipulating composite values. Based on these observations,
we argue that CDT support in RDF (and its query language, SPARQL) lags
behind the state of the art: instead of supporting them as built-in types, RDF
introduces so-called containers and collections [1], which allow users to model
composite values through dedicated vocabulary on top of the core data model.

Figures 1(a) and 1(b) illustrate these options using an example with a list of
three keynote speakers, Amy, Bob, and Cal, for some conference that is identified
by the IRI :CTConf. Figure 1(a) utilizes an rdf:List collection, which models
the list using two pointers, one to the first element (the triples with predicate
rdf:first) and one to the tail of the list (predicate rdf:rest). The alternative in
Figure 1(b) uses an rdf:Seq container, in which the list members are enumerated
using a sequence of so-called membership predicates rdf: 1, rdf: 2, rdf: 3.

⋆ Olaf Hartig is appointed both as an Amazon Scholar and as a Senior Associate
Professor at Linköping University. This paper describes work performed at Amazon.

https://orcid.org/0000-0002-1741-2090

2 Hartig et al.

:CTConf :keynoteSpeakers :List0 .
:List0 rdf:type rdf:List .
:List0 rdf:first <http ://ex.com/Amy > .
:List0 rdf:rest :List1 .
:List1 rdf:first <http ://ex.com/Bob > .
:List1 rdf:rest :List2 .
:List2 rdf:first <http ://ex.com/Cal > .
:List2 rdf:rest rdf:nil .

(a) Representation as rdf:List

:CTConf :keynoteSpeakers :Seq0 .
:Seq0 rdf:type rdf:Seq .
:Seq0 rdf:_1 <http ://ex.com/Amy > .
:Seq0 rdf:_2 <http ://ex.com/Bob > .
:Seq0 rdf:_3 <http ://ex.com/Cal > .

(b) Representation as rdf:Seq

:CTConf :keynoteSpeakers
"[<http ://ex.com/Amy >, <http ://ex.com/Bob >, <http ://ex.com/Cal >]"^^ cdt:List.

(c) Our proposal: representation as compact, self-contained RDF literal

Fig. 1. Example of different options to represent a list in RDF.

Modeling composite values as structures within the data itself—instead of
representing them as compact, self-contained objects as proposed in this paper—
comes with several drawbacks. First, representing composite values becomes
verbose and bloats up the storage footprint, especially when it comes to large
containers and collections. Second, extracting information from such composite
values using SPARQL is tricky; for instance, in the (common) case where the
size of an rdf:List is not known upfront, returning an ordered enumeration of
elements using SPARQL requires a complex query containing a mix of prop-
erty paths, grouping, and counting [2]. Third, the manipulation of composite
values using SPARQL is complex; for instance, writing a query that inserts an
element into (a given position) of an rdf:List or an rdf:Seq is hard to achieve
using SPARQL update statements, if possible at all. Ultimately, all these aspects
impact the usability and performance of handling composite values in RDF [2].

Our proposal is to introduce composite type literals in RDF—as illustrated
in Figure 1(c) for the running example—and to support them in SPARQL as
first-class citizens. To facilitate the latter we propose language extensions for
SPARQL to construct, access, and manipulate composite values at query and
update time. By building upon the RDF literal mechanism, this approach is
fully compatible with RDF, which means that it enables storage and retrieval of
composite values as “black box” entities in existing triple stores, without modi-
fications. Of course, systems that support the approach may leverage dedicated
data structures to efficiently implement our proposed language extensions for
SPARQL. The remainder of this short paper outlines the approach in more de-
tail and describes the resources that we provide for the approach, which include
a formal specification, tests suites, and two open source implementations.

2 Approach

The basis of the approach is to capture lists and maps as RDF literals with
the datatype IRIs cdt:List and cdt:Map, respectively. The components of such a

Datatypes for Lists and Maps in RDF Literals 3

composite value may be RDF terms, including literals representing other com-
posite values. The lexical form (i.e., the string representation) of such a cdt:List

or cdt:Map literal contains the components of the composite value serialized in a
format that is based on the RDF Turtle format [3]. For instance, the literal in
the object position of the triple in Figure 1(c) represents a list of three IRIs.

An example of two lists that contain literals are given in the following triples.
This example illustrates that the Turtle shorthand notation for specific types of
literals can be used inside the lexical forms of cdt:List (and cdt:Map) literals.

:s :p1 "[1, 2, 'hello', <http :// example.org/>, [1,2,3], 2.5]"^^ cdt:List .
:s :p2 "['1999 -08 -16'^^<http ://www.w3.org /2001/ XMLSchema#date > ,4]"^^ cdt:List .

Maps (i.e., collections of key-value pairs) are represented by cdt:Map literals as
in the object position of the following triple.

:s :p "{ 'name': 'Warsaw'@en , 1: <http :// example.org/>, 9: [1,2] }"^^ cdt:Map .

By adopting the Turtle shorthand notation, the syntax of our approach is
designed such that the lexical form of cdt:Map literals encompasses the grammar
of JSON objects, including the possibility of nested structures.

Given such literals, we extend SPARQL in the following three ways with
functionality related to the types of composite values that these literals capture.

First, we introduce various functions for such literals that can be used in
expressions (as used in BIND clauses, FILTER clauses, ORDER BY clauses,
HAVING clauses, and SELECT clauses). As an example, consider the following
SPARQL query (prefix declarations omitted) that uses two such functions in a
BIND clause; the function denoted by the IRI cdt:concat concatenates two lists,
returning the resulting list as a cdt:List literal again, and the other function
(cdt:size) returns the cardinality of the resulting list. When executing this query
over the first example data above (the example with the two lists), the value
produced for the ?combinedLength variable would be 8.

SELECT * WHERE { :s :p1 ?l1 .
:s :p2 ?l2 .
BIND(cdt:size(cdt:concat (?l1 ,?l2)) AS ?combinedLength) }

Further functions for cdt:List literals that we introduce are cdt:contains,
cdt:get cdt:head, cdt:reverse, cdt:subseq, and cdt:tail; where cdt:get and
cdt:size are also defined for cdt:Map literals, in addition to cdt:containsKey,
cdt:get, cdt:keys, cdt:merge, cdt:put, cdt:remove, and cdt:size. Additionally,
we introduce constructor functions for these literals and define corresponding
extensions to the SPARQL comparison operators such as = and <.

As our second extension to SPARQL, we introduce a new operator called
UNFOLD that splits composite values into their individual components and,
then, assigns these components separately to a new query variable. The following
query illustrates how this operator can be used to extract all elements from all
lists represented by the objects of triples that match a given triple pattern. When
executing this query over the first example data above (again, the one with the
two lists), the query result consists of eight solutions: six for the six elements

4 Hartig et al.

of the list in the first triple of the example data and another two for the two
elements of the list in the second triple.

SELECT ?element ?list WHERE { :s ?p ?list .
UNFOLD(?list AS ?element) }

In addition to the one-variable version of UNFOLD as demonstrated above,
we also define a two-variables version, which can be used for extracting the
key-value pairs from cdt:Map literals.

Our third extension to SPARQL is an aggregation function called FOLD
that produces composite values (as cdt:List or cdt:Map literals) for groups of
solution mappings. The following query illustrates how this function can be used
to create lists of persons that have the same name.

SELECT ?name (FOLD(? person) AS ?list) WHERE { ?person rdf:type foaf:Person .
?person foaf:name ?name . }

GROUP BY ?name

3 Resources

We have defined our approach in a specification3 that we aim to submit to the
SPARQL-DEV Community Group4 at the W3C to be considered for standard-
ization. Currently, our specification is maintained in a public Github repository.5

The specification defines the two datatypes in terms of their respective value
space, lexical space, and lexical-to-value mapping, as required by the standard
mechanism to extend RDF with custom datatypes. Additionally, the specifica-
tion defines the corresponding extensions to SPARQL, including:

– extensions to existing SPARQL comparison operators such as = and < that
define these operators for pairs of cdt:List and pairs of cdt:Map literals,

– new functions to construct and to access such literals in expressions,
– ordering behavior for such literals in ORDER BY clauses, and
– new operators to fold and unfold the represented lists and maps in queries.

In addition to the specification document, we provide a comprehensive collec-
tion of test suites in the aforementioned Github repository. These tests cover all
relevant aspects and special cases of all the extensions to SPARQL listed above
and are specified in RDF using the framework6 that was defined by the W3C
RDF Data Access Working Group7 and is now maintained by the RDF Test Cu-
ration Community Group8 at the W3C. Since the test harnesses of many RDF
and SPARQL systems are built on this framework, our test suites can readily be
used when implementing support for our proposal in such systems.

3 https://w3id.org/awslabs/neptune/SPARQL-CDTs/spec/latest.html
4 https://www.w3.org/community/sparql-dev/
5 https://github.com/awslabs/SPARQL-CDTs
6 https://www.w3.org/2001/sw/DataAccess/tests/README.html
7 https://www.w3.org/2001/sw/DataAccess/homepage-20080115
8 https://www.w3.org/community/rdf-tests/

https://w3id.org/awslabs/neptune/SPARQL-CDTs/spec/latest.html
https://www.w3.org/community/sparql-dev/
https://github.com/awslabs/SPARQL-CDTs
https://www.w3.org/2001/sw/DataAccess/tests/README.html
https://www.w3.org/2001/sw/DataAccess/homepage-20080115
https://www.w3.org/community/rdf-tests/

Datatypes for Lists and Maps in RDF Literals 5

Besides the specification and the tests, as resources to facilitate implementa-
tions, we have also already created two complete, Open Source implementations
of the proposal. That is, we have integrated support for the approach directly into
the RDF programming frameworks Apache Jena9 (Java) and Attean10 (Perl).

4 Future Work

As our future work, in addition to the aforementioned plans to submit our pro-
posal to the W3C (and also to other RDF triple store vendors), we are planning
to study the performance that can be achieved with the proposed approach in
our implementations. Moreover, we aim to extend the approach with options to
explicitly capture typing constraints regarding elements of lists or maps, and we
consider adopting the approach to also capture paths as a possible query result.

References

1. D. Brickley and R. Guha. RDF Schema 1.1. W3C Recommendation, Online at
https://www.w3.org/TR/rdf11-schema/, Feb. 2014.

2. E. Daga, A. Meroño-Peñuela, and E. Motta. Sequential Linked Data: The State of
Affairs. Semantic Web, 12(6):927–958, 2021.

3. E. Prud’hommeaux and G. Carothers. RDF 1.1 Turtle. W3C Recommendation,
Online at https://www.w3.org/TR/turtle/, Feb. 2014.

9 https://jena.apache.org/ — Our implementation is currently in the following
fork of the official Jena repository for which we are planning to request a merge.
https://github.com/hartig/jena/tree/UnfoldAndFoldWithCompositeValues

10 https://github.com/kasei/attean — Our implementation is in the following
branch of Attean, ready to be merged after discussion with the Attean community.
https://github.com/kasei/attean/tree/mutli-value-exprs

https://www.w3.org/TR/rdf11-schema/
https://www.w3.org/TR/turtle/
https://jena.apache.org/
https://github.com/hartig/jena/tree/UnfoldAndFoldWithCompositeValues
https://github.com/kasei/attean
https://github.com/kasei/attean/tree/mutli-value-exprs

	Datatypes for Lists and Maps in RDF Literals
	Introduction
	Approach
	Resources
	Future Work

