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Abstract. Tables, a primary modality for organizing and presenting
information for human comprehension, are ubiquitously found in docu-
ments. Their design poses significant challenges for systems, including
large language models, when it comes to processing and understanding
tabular data. We propose a novel method to free the tabular data en-
cumbered inside documents (PDFs, HTML pages, Word documents, etc.)
and perform question-answer (QA) on this data via natural language in-
teraction. Our method stresses on its domain-agnostic and “open”-QA-
oriented abilities, that exceed the performance of current LLMs in cer-
tain situations. We achieve this using a combination of table extraction
tools, followed by the creation of a knowledge graph using the tabular
data sources and employing QAnswer4, a QA system generator. A video
demonstration showcases our tool’s capabilities on United Nations (UN)
disability documents and webpages.
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1 Introduction

Tables efficiently summarize information in a visually organized framework to
facilitate comprehension and comparison across dimensions. They are commonly
incorporated in scientific, business, and financial documents to present data.

Interpreting tabular information using standard language representations be-
comes challenging as table complexity increases [11]. PDF documents prioritize
layout for human readers, which results in poor machine readability, requiring
complex algorithms to recognize text, tables, and retrieve tabular structure [7].

Extensive research exists to extract and leverage valuable tabular data for
natural language processing (NLP) tasks, including table QA which comprehends
and reasons with tables to provide accurate answers to user questions.

Our approach involves extracting tables contained in a document using sev-
eral open-source table extraction tools to convert them to comma-separated
values (CSV) format. This CSV is then transformed into a resource description

4 https://www.qanswer.eu/
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format (RDF) file to create knowledge graphs corresponding to all tables in the
document. We further enrich these knowledge graphs and leverage them as an
additional, complementary data source to the original document text. The two
data sources are integrated with QAnswer, a QA system generator, which is
tuned to simultaneously query documents and knowledge graphs.

The main contributions of this work are:

– A domain-independent approach, unlike pre-trained transformers, enabling
application to specialized and unobserved domain data.

– Capable of handling complex table layouts and hierarchies while preserving
structure; not flattening tables thus retaining contextual information.

– Performs “open”-QA which retrieves relevant documents and extracts an-
swers, essential for real-world user queries across extensive documents, unlike
impractical “closed”-QA which unrealistically provides documents alongside
questions.

– Advances over LLM-based methods by addressing challenges of inadequate
table interpretation, token limits on large tables, hallucination and erroneous
symbolic operations.

2 Related Work

Transformer-based methods such as [1], [5] excel and set benchmarks on open-
domain datasets like WikiTableQuestions5 and Natural Questions6. Tables ap-
pearing in such datasets exhibit simpler structures, lacking row headers and
having a single, non-hierarchical column header [9]. Experiments [6] show that
even advanced pre-trained transformers struggle with domain-specific table lay-
outs.

Works like [1], [9] reduce tables to text, however, text-focused representations
are sub-optimal for tables as they neglect special cell relationships [11].

Closest to our work, [8] utilizes knowledge graphs for table QA, but unlike
ours, it demands table URIs for “closed”-QA and flattens tables to text strings
post Wikipedia pre-training.

[2] evaluates LLMs on table QA datasets, noting their failures with “huge”
tables due to token limits and doubts their ability to supplant symbolic methods.
Evaluation of 14 LLMs in [10] reveals their imperfect factual knowledge grasp,
particularly for non-popular entities.

3 Methodology

Table extraction is challenging since tables lack semantics, have varied layouts
and span pages with repeating headers/footers requiring analysis of context and
format for accurate association. Real-life tables appear embedded in text, neces-
sitating abilities to handle multi-content QA.

5 https://ppasupat.github.io/WikiTableQuestions/
6 https://ai.google.com/research/NaturalQuestions/
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The first step in our methodology extracts tables from documents using both
deterministic and non-deterministic methods via open-source tools like Tabula,
Camelot, and pdfplumber. Discernible cell boundaries are parsed with OpenCV-
based transformations while tables with whitespace separators are processed by
detecting tabular areas, guessing column structure, and geometrically matching
words to cells. Our method integrates the strengths of each tool, optimizing for
context-specific performance. In the QA phase, it leverages the best-extracted
output to formulate answers.
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Fig. 1. Flow for the Proposed Methodology

The second step saves the tool outputs as a CSV file, enabling FAIR data
principles compliance through openness and interoperability via a non-proprietary
format.

The third step converts CSV data to RDF, the backbone for knowledge
graphs, using the CSV on the Web (CSVW)7 vocabulary which enables uniform
semantic representation of tabular structures through RDF triples, streamlining
alignment of diverse domain and format tables while avoiding elaborate ontology
construction, rather maintaining a simplified set of mapping guidelines. The RDF
format facilitates knowledge graph creation and increases data openness.

The final step enables combining QA systems over text (like PDFs) [4] and
over knowledge graphs (RDF) [3] on the QAnswer platform. User queries are
sent to both QA systems, which have been made combinable, so they execute the
queries and compare results based on calculated confidence levels to determine
the best answer to render to the user. Thus, we created one QA system with RDF
data extracted from tables and another QA system with the original document
texts from which tables were extracted. These systems have been integrated into

7 https://www.w3.org/TR/tabular-data-primer/
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a combined QA system that leverages both structured and unstructured data
sources to execute queries and get better results.

4 Demonstration

A demonstration is presented to exemplify the capabilities of our tool on a corpus
comprising publicly accessible United Nations (UN) documents and webpages
sourced from the disability domain. An end-to-end presentation of the method
along with test runs and comparisons can be found in a video accessible at
https://youtu.be/ve6xCwP1LHs.

5 Conclusions and Future Work

We present a pioneering approach to liberate tabular data within documents
and perform QA via NLP interaction. We intend to evaluate the approach on
a popular benchmark dataset to further assess its capabilities in comparison to
existing methods, including large language models. Future plans include incorpo-
rating numerical and symbolic reasoning, multilingual table querying, and user
interface (UI) enhancements for combined QA systems.
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