
PySPARQL Anything Showcase⋆

Marco Ratta1[000−0003−3788−6442], Enrico Daga1[0000−0002−3184−5407], and Luigi
Asprino2[0000−0003−1907−0677]

1 The Open University, Walton Hall, Milton Keynes, UK
{marco.ratta,enrico.daga}@open.ac.uk

2 University of Bologna, Italy
luigi.asprino@unibo.it

Abstract. In this demo paper we present PySPARQL Anything, the
Python library of SPARQL Anything, an open source project for sup-
porting semantic web technologists in building RDF graphs from het-
erogeneous sources. PySPARQL Anything enables developers to inject
RDF graphs into their Python RDFlib, NetworkX or pandas-powered
data science processes, opening new opportunities for developing com-
plex, data-intensive pipelines for generating and manipulating RDF data.
In addition, the library exposes a Python-based Command Line Interface
(CLI) allowing easier installation and use.

Keywords: Knowledge Graph Construction · Façade-X · SPARQL Any-
thing · Python

1 Introduction

Knowledge Graphs are nowadays first-class citizens in data science as they allow
the seamless integration of diverse data [6]. Therefore, there has been increasing
effort in supporting Python developers to work with RDF Knoweldge Graphs [4,
3]. In this demo, we aim to present and disseminate to the Semantic Web com-
munity PySPARQL Anything3, the Python library of SPARQL Anything4, an
open source project that supports semantic web technologists in building RDF
graphs from heterogeneous sources. SPARQL Anything is a data integration sys-
tem that implements the Façade-X meta-model [2], resolving the heterogeneity
of sources by structurally mapping them onto a set of RDF components upon
which semantic mappings can be constructed. A technical report illustrating the
overall architecture and functionalities of SPARQL Anything can be found in [1].

⋆ The research leading to this publication has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement
"Polifonia: a digital harmoniser of musical cultural heritage" (Grant Agreement N.
101004746), https://polifonia-project.eu. The publication reflects the author’s views.
The Research Executive Agency (REA) is not liable for any use that may be made
of the information contained therein.

3 https://github.com/SPARQL-Anything/PySPARQL-Anything
4 https://github.com/SPARQL-Anything/sparql.anything

2 M. Ratta et al.

Using the JSON data hosted at https://sparql-anything.cc/example1.json for
example, one can select the TV series starring "Courteney Cox" with the SPARQL
query:

PREFIX xyz: <http :// sparql.xyz/facade -x/data/>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX fx: <http :// sparql.xyz/facade -x/ns/>
SELECT ?seriesName
WHERE {

SERVICE <x-sparql -anything:https ://sparql -anything.cc
/example1.json > {
?tvSeries xyz:name ?seriesName .
?tvSeries xyz:stars ?star .
?star fx:anySlot "Courteney Cox" .

}
}

to directly obtain the results:

seriesName
"Cougar Town"
"Friends

The accumulated experience and feedback from the community of SPARQL
Anything users, has lead to the decision of developing a Python integration. This
is because of the emergent need to support the increasing community of Python
users of Semantic Web technologies and the wide spread adoption of Python
based tools for downstream tasks. PySPARQL Anything enables developers to
inject RDF graphs into their Python RDFlib5, NetworkX 6 or pandas7-powered
data science processes, opening new opportunities for developing complex, data-
intensive pipelines for generating and manipulating RDF data. Additionally the
library exposes a Python-based Command Line Interface (CLI) allowing for eas-
ier installation and use. We demonstrate the usage of PySPARQL Anything via
a "pythonic" re-interpretation of the showcase-musicxml8 showcase, available at
the SPARQL Anything Github repository for comparison.

2 PySPARQL Anything

PySPARQL Anything has been designed by borrowing some concepts of the
Command behavioural pattern. The pysparql_anything.SparqlAnything class,
with its run, ask, select and construct methods, defines the frontend inter-
face of the system. The user specifies the parameters of their SPARQL request as
5 https://github.com/RDFLib/rdflib
6 https://github.com/networkx/networkx
7 https://github.com/pandas-dev/pandas
8 https://github.com/SPARQL-Anything/showcase-musicxml

PySPARQL Anything Showcase 3

Python keyword arguments. "Under the hood", these are automatically encap-
sulated by the language as a dict object that is passed, together with a receiver
instance, to a specific execution method.

This receiver is a pysparql_anything.SparqlAnythingReflection object,
which is a Python "reflection" of the SPARQLAnything class, the entry point of
SPARQL Anything. This has been implemented using the PyJNIus 9 library.

The output of the user’s request is either printed to the terminal, saved
to a file (when using the run method), or returned as a Python object.
Specifically, the tool supports returning the results of SELECT queries as
dict or pandas.DataFrame objects and the results of CONSTRUCT queries as
rdflib.Graph or networkx.MultiDiGraph objects. These can be achieved via
the select and construct methods respectively. The results of ASK queries are
returned as Python booleans when calling the ask method.

PySPARQL Anything also offers a CLI which processes the optional query
arguments and passes them directly to the receiver object. This is accessed via
the terminal using the sparql-anything command.

PySPARQL Anything is distributed on the Python Package Index (PyPI) 10

and is installed by typing the following in your machine’s terminal.

$ pip i n s t a l l pysparql−anything

The code is also available at the corresponding Github repository11.

3 Demo

In the demo, we will first illustrate the interface of PySPARQL Anything and
then look at how SPARQL queries may be integrated into Python code.

As an example, the query showed in the introduction section above can be
executed via either the command line interface as
!sparql -anything --query queries/select/testSelect.sparql

where one would obtain the same output as before, printed on the terminal,
seriesName
Friends
Cougar Town

or within a Python script or shell as
engine.select(

query="queries/select/testSelect.sparql", output_type=pd.DataFrame
)

where one could (optionally) have the result returned as the pandas.DataFrame
object:

9 https://github.com/kivy/pyjnius
10 https://pypi.org/project/pysparql-anything/
11 https://github.com/SPARQL-Anything/PySPARQL-Anything

4 M. Ratta et al.

<class ’pandas.core.frame.DataFrame ’>

seriesName
0 Friends
1 Cougar Town

Furthermore, we will present an end-to-end scenario, based on a case study in
computational musicology [5]. A music score in MusicXML is processed with
PySPARQL Anything to generate a Knowledge Graph. Such graph is then anal-
ysed with Python libraries to derive interesting metrics such as statistics on note
trigrams and derive a probability mass function of the data.

The demo can be accessed and executed via a live Google Colab notebook
at the following address: https://bit.ly/pysa-demo
Step 1 In the first step, we setup the library and load the MusicXML files:
import pysparql_anything as sa
Construct the SparqlAnything object
engine = sa.SparqlAnything ()
Assign the root directory of the files to a variable
root_dir = "showcase -musicxml/musicXMLFiles/AltDeu10/"
Create a list of the names and paths to the xml files
xmls= [(name , os.path.join(root_dir , name)) for name in os.listdir(root_dir)]

Step 2 Next, we proceed with extracting melodic information, specifically, we
show how one can use PySPARQL Anything to integrate SPARQL queries into
a downstream task:
melody_dfs = [engine.select(

query="showcase -musicxml/queries/getMelodyParam.sparql",
values ={"filePath": xml[1]},
output_type=pd.DataFrame

) for xml in xmls]

Step 3 In the following code, we build trigrams from the data and count them:
helper function to build and count the trigrams from a melody DataFrame
def count_trigrams(notes: list , trigrams_dict=dict()) -> dict[str , int]:

for i in range(len(notes) - 2):
trigram = notes[i] + "-" + notes[i + 1] + "-" + notes[i + 2]
if trigram in trigrams_dict:

trigrams_dict[trigram] += 1
else:

trigrams_dict[trigram] = 1
return trigrams_dict

Construct the trigrams and count their frequencies.
Store the results in a dictionary
trigrams = dict()
for melody_df in melody_dfs:

notes = list(melody_df["pitch"])
count_trigrams(notes , trigrams)

Step 4 Finally, we produce the probability mass function of the data:
Calculate the total number of trigrams in the dataset
total = sum(list(trigrams.values ()))
Construct the probability mass function of the trigrams in the dataset
pmf = {k: v / total for k, v in trigrams.items ()}
(Optional) Convert the pmf to a pd.DataFrame
pmf_df = pd.DataFrame(

data =[[k, v] for k, v in pmf.items()],
columns =["trigram", "P(trigram)"]

)

PySPARQL Anything Showcase 5

As a result we obtain

index , tr igram ,P(tr igram)
0 ,A4−C5−D5,0 .0011237357972281184
1 ,C5−D5−E5,0 .0032463478586590086
2 ,D5−E5−E5,0 .0011237357972281184
3 ,E5−E5−A4,6 .242976651267325 e−05
. . .

which can be compared to the result file trigramAnalysis.csv of the showcase.

4 Conclusion

In this demo paper we have proceeded to introduce PySPARQL Anything to the
Semantic Web community. This is the Python library of the SPARQL Anything
open source project that supports semantic web technologists in building RDF
graphs from heterogeneous sources. We have also provided a description of the
basic architecture underlying the backend of the system and have provided ex-
amples of how a SPARQL query can be executed with PySPARQL Anything.
Further, a scenario from computational musicology illustrating how SPARQL
queries can be integrated into a Python workflow has also been described.

The full live demo is available at https://bit.ly/pysa-demo.

References

1. Asprino, L., Daga, E., Dowdy, J., Mulholland, P., Gangemi, A., Ratta, M.: Stream-
lining knowledge graph construction with a fa\c {c} ade: The sparql anything
project. arXiv preprint arXiv:2310.16700 (2023)

2. Asprino, L., Daga, E., Gangemi, A., Mulholland, P.: Knowledge Graph Construction
with a façade: a unified method to access heterogeneous data sources on the Web.
ACM Transactions on Internet Technology 23(1), 1–31 (2023)

3. Dasoulas, I., Chaves-Fraga, D., Garijo, D., Dimou, A.: Declarative RDF construction
from in-memory data structures with RML (2023)

4. Liang, L., Li, Y., Wen, M., Liu, Y.: Kg4py: A toolkit for generating python knowl-
edge graph and code semantic search. Connection Science 34(1), 1384–1400 (2022)

5. Ratta, M., Daga, E.: Knowledge graph construction from musicxml: an empirical
investigation with sparql anything (2022)

6. Wilcke, X., Bloem, P., De Boer, V.: The knowledge graph as the default data model
for learning on heterogeneous knowledge. Data Science 1(1-2), 39–57 (2017)

