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Abstract. This paper presents an approach that allows the NAO hu-
manoid robot to respond to a question from a user and gesticulate de-
pending on the text that it is saying. The question might also be an
action command spoken by the user that the robot recognizes and ex-
ecutes. A Large Language Model is integrated within the approach to
provide the question-answering capabilities. For the action commands,
we have used an action robot ontology that we have defined in past work.
We have extracted the pertinent classes and individuals and generated a
three-word string for each action that is matched semantically with the
users text. Moreover, as far as the action commands are concerned, the
system can work in two modes: STATELESS and STATEFUL. When in
STATEFUL mode, the robot knows its current posture and performs the
command only if it is compatible with its current state.
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In the realm of robotics and Artificial Intelligence (AI), recent advancements
have given rise to a multitude of robot-centric applications. There is a growing
conviction that there is a 50% probability of AI surpassing human capabilities
across all tasks within 45 years, eventually leading to the automation of all hu-
man jobs in 120 years, as noted by authors in [6]. Social robots are rapidly gaining
prominence and are now being deployed in various countries, serving diverse pur-
poses. The overarching objective of social robots is to enhance interaction with
humans, aiming for more effective and efficient engagements.

On the one hand, Large language models (LLMs) have emerged as transfor-
mative tools within the realm of robotics applications, playing a pivotal role in
augmenting the capabilities of robotic systems [12]. The integration of LLMs,
such as OpenAI’s GPT-4, into robotics research and development has opened
new avenues for enhanced human-robot interaction, cognitive processing, and
autonomous decision-making. One notable application of LLMs in robotics in-
volves natural language understanding, enabling robots to interpret and respond
to human commands with unprecedented accuracy [10,11]. This linguistic pro-
ficiency facilitates more intuitive and user-friendly interfaces, allowing users to
communicate with robots using everyday language. This not only simplifies the
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user experience but also broadens the accessibility of robotic technologies to
individuals with varying levels of technical expertise.

On the other hand, the advent of humanoid robots, exemplified by mod-
els like NAO, has sparked a rapid proliferation across various domains. Robots
are increasingly being leveraged for a multitude of tasks, catalyzing a surge in
interdisciplinary research aimed at exploring their integration into diverse appli-
cations [1,7,3,2,4,8,5]. From the controlled environments of research laboratories
to the dynamic landscapes of real-world scenarios, humanoid robots are mak-
ing their presence felt. Their adaptability and versatility make them invaluable
assets in fields as varied as healthcare, education, entertainment, and beyond.
Researchers and practitioners alike are actively exploring the potential of these
robots to augment human capabilities and improve efficiency across a wide spec-
trum of tasks.

In this paper, we propose an innovative approach that leverages the question-
answering capabilities of LLMs to facilitate dynamic conversations between users
and a NAO humanoid robot. The user’s response is intelligently parsed into sub-
sentences, which are then articulated by the robot. If a given sub-sentence implies
an action corresponding to the robot’s ontology, the robot seamlessly executes
the action. Otherwise, the robot engages in the standard Animated Say anima-
tion. Additionally, users have the option to issue action commands directly. In
such cases, by leveraging the semantic similarity between the sentence embed-
dings and three-word strings created from the action robot ontology introduced
in [9], the robot determines the appropriate action to perform. This results in a
fluid and natural interaction between the user and the robot. The scripts devel-
oped for the Action Recognition Engine and the Choregraphe script are freely
available in a public repository1. Additionally, a video showcasing an example
of the interaction can be accessed publicly2.

1 How it works

The architecture of the approach proposed in this paper is illustrated in Figure 1.
The NAO robot is situated within the same local area network as a server host-
ing an Action Recognition engine that we have developed and that queries the
elements from the action robot ontology. Efficient communication between the
NAO and the server is facilitated through a router. The NAO executes a Chore-
graphe3 program that we have designed to perform the following actions. The
robot initiates interaction by asking the user to speak. Subsequently, it waits for
the user to articulate a response. Once the user speaks, the robot records every-
thing he/she says. The recorded audio is then transmitted to OpenAI Speech-to-
1 https://github.com/loriboi/zoraProject
2 https://www.youtube.com/watch?v=hEC9EHhjVe4&feature=youtu.be. We have

edited the video to remove the instances when the robot was waiting for responses
from the network. We can provide a link to the unedited video, which contains all
the original footage.

3 https://www.robotlab.com/choregraphe-download-resources

https://github.com/loriboi/zoraProject
https://www.youtube.com/watch?v=hEC9EHhjVe4&feature=youtu.be
https://www.robotlab.com/choregraphe-download-resources
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Fig. 1. Architecture of the proposed approach.

text capability4 for speech-to-text conversion. OpenAI Speech-to-text promptly
returns the corresponding text to the robot based on the recorded audio. Fol-
lowing this, the robot sends the obtained text to the Action Recognition engine
on the server. The robot then waits for the output from the Action Recogni-
tion engine. If the output from the engine is identified as a command action,
then the robot proceeds to execute it. However, if the text is not recognized
as an action command, the robot forwards it to OpenAI ChatGPT to generate
an appropriate response through its question-answering capabilities. The robot
retrieves the response from OpenAI ChatGPT and promptly forwards it back
to the Action Recognition engine for further processing. Subsequently, the robot
receives a dictionary from the Action Recognition engine. Each entry in the dic-
tionary contains a pair: each sub-sentence extracted from the response generated
by ChatGPT and the associated action to be performed.

The Action Recognition engine, operating on the server, undertakes the fol-
lowing tasks. Initially, it awaits a text sent from the robot. Upon receipt, it com-
putes the semantic similarity between the received text and all possible actions
defined in the action command ontology we have defined5. Specifically, the text
representing each action is transformed into embeddings using the bert-base-
nli-mean-tokens Sentence Transformer6. Subsequently, the semantic similarities
between the text and all actions are sorted in decreasing order. If the first ele-
ment in the list is higher than an empirically determined fixed threshold of 0.8,
the engine communicates the identified action (corresponding to the first ele-
ment in the list) back to the robot for execution. However, if no match is found
with any action of the ontology, the engine returns a specific code, signaling the
absence of a match, and awaits further text from the robot. Following this, the
Action Recognition engine retrieves the text from the robot, which will return a
response to the user’s input obtained from ChatGPT, and divides the response
into sub-sentences. Constructing a dictionary, each entry corresponds to a sub-
sentence and is associated with the closest action based on semantic similarity.

4 https://platform.openai.com/docs/guides/speech-to-text
5 https://github.com/Fspiga13/Humanoid-Robot-Obeys-Human-Action-Command

s-through-a-Robot-Action-Ontology
6 https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens

https://platform.openai.com/docs/guides/speech-to-text
https://github.com/Fspiga13/Humanoid-Robot-Obeys-Human-Action-Commands-through-a-Robot-Action-Ontology
https://github.com/Fspiga13/Humanoid-Robot-Obeys-Human-Action-Commands-through-a-Robot-Action-Ontology
https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens


4 D. Reforgiato Recupero and Boi

If, for a certain entry, the semantic similarity falls below the threshold, the action
linked to the underlying sub-sentence will be the Animated Say of NAO. This
process highlights the engine’s intricate semantic analysis, action determination,
and response generation capabilities within the proposed framework.

To define the text representing each action previously mentioned, we
analyzed the action command ontology referenced earlier. Initially, we iden-
tified the BodyPartWord individuals along with their corresponding keywords
and synonyms. For instance, arm is a BodyPartWord individual with keywords
and synonyms such as arm, appendage, bicep, forearm, forelimb. Next, we re-
trieved all classes that are subclasses of BaseAction and SimpleAction, includ-
ing ArmAction, HandAction, HeadAction, LegAction, Walk and Posture. Sub-
sequently, we extracted individuals from these classes, such as LegDown, LegUp,
HeadDown, HeadForward, HeadLeft, HeadRight, HeadUp, ArmDown, ArmFor-
ward, ArmSide, ArmUp, Crouch, LyingBack, LyingBelly, WalkBackward,
etc. Let this set be denoted as S. To collect the objects of the action and formu-
late a string representation, for each s ∈ S, we extracted elements w ∈ W and
b ∈ B such that {s, involves, t} and {t, uses, w} and {t, bodySide, b} and
{w, is_a, BodyPartWord}. Also, to gather other elements of the action, for each
s ∈ S, we collected all a ∈ A such that {s, uses, a} and {a, is_a, ActionWord}.
Finally, we obtained the keyword and synonym values of each element from W ,
B and A. This process allowed us to formulate all possible combinations for each
potential action recognized by the ontology, using the body parts W , the side of
the body B, and the remaining action words A.

For instance, considering the ArmDown instance, we would derive the sets
W = {arm, bicep, forearm, hand, claw, paw, etc.}, B = {left, right}, and A =
{down, drop, lower, etc.} Each combination of values extracted from these three
sets would generate a three-word string corresponding to the ArmDown instance.
The combination with the highest similarity to the user’s text is then retrieved:
it represents the robot’s action corresponding to the user’s input.

Additionally, concerning the action commands, the system operates in two
modes: STATELESS and STATEFUL. In STATELESS mode, the robot executes
each human expression correctly interpreted as an action command, and then
reverts to its default posture. In STATEFUL mode, the robot is aware of its
current posture and executes a command only if it is compatible with its existing
state. In this mode, the robot does not return to its default posture. A sequence of
action commands can be given to the robot. For instance, in STATEFUL mode,
the user might instruct the robot to stand on its left leg, then ask a question that
the robot responds to using ChatGPT and then give one more action to walk.
However, the last action will not be performed due to its incompatibility with
the current state (left leg raised). The list of incompatibilities has been taken
from the defined robot action ontology.

References
1. Alonso, R., Bonini, A., Recupero, D.R., Spano, L.D.: Exploiting virtual reality and

the robot operating system to remote-control a humanoid robot. Multim. Tools



Title Suppressed Due to Excessive Length 5

Appl. 81(11), 15565–15592 (2022). https://doi.org/10.1007/S11042-022-120
21-Z, https://doi.org/10.1007/s11042-022-12021-z

2. Alonso, R., Concas, E., Recupero, D.R.: A flexible and scalable social robot ar-
chitecture employing voice assistant technologies. In: Carolis, B.N.D., Gena, C.,
Lieto, A., Rossi, S., Sciutti, A. (eds.) Proceedings of the Workshop on Adapted
intEraction with SociAl Robots, cAESAR 2020, Cagliari, Italy, March 17, 2020.
CEUR Workshop Proceedings, vol. 2724, pp. 36–40. CEUR-WS.org (2020), https:
//ceur-ws.org/Vol-2724/paper10.pdf

3. Atzeni, M., Recupero, D.R.: Multi-domain sentiment analysis with mimicked and
polarized word embeddings for human-robot interaction. Future Gener. Comput.
Syst. 110, 984–999 (2020). https://doi.org/10.1016/J.FUTURE.2019.10.012,
https://doi.org/10.1016/j.future.2019.10.012

4. Cauli, N., Recupero, D.R.: Video action recognition and prediction architecture for
a robotic coach (short paper). In: Consoli, S., Recupero, D.R., Riboni, D. (eds.)
Proceedings of the First Workshop on Smart Personal Health Interfaces co-located
with 25th International Conference on Intelligent User Interfaces, SmartPhil@IUI
2020, Cagliari, Italy, March 17, 2020. CEUR Workshop Proceedings, vol. 2596, pp.
69–77. CEUR-WS.org (2020), https://ceur-ws.org/Vol-2596/paper6.pdf

5. Gerina, F., Massa, S.M., Moi, F., Recupero, D.R., Riboni, D.: Recognition of cook-
ing activities through air quality sensor data for supporting food journaling. Hum.
centric Comput. Inf. Sci. 10, 27 (2020). https://doi.org/10.1186/S13673-020
-00235-9, https://doi.org/10.1186/s13673-020-00235-9

6. Grace, K., Salvatier, J., Dafoe, A., Zhang, B., Evans, O.: Viewpoint: When will ai
exceed human performance? evidence from ai experts. Journal of Artificial Intelli-
gence Research 62, 729–754 (2018)

7. Recupero, D.R.: Technology enhanced learning using humanoid robots. Future
Internet 13(2), 32 (2021). https://doi.org/10.3390/FI13020032, https:
//doi.org/10.3390/fi13020032

8. Recupero, D.R., Dessì, D., Concas, E.: A flexible and scalable architecture for
human-robot interaction. In: Chatzigiannakis, I., de Ruyter, B.E.R., Mavrom-
mati, I. (eds.) Ambient Intelligence - 15th European Conference, AmI 2019, Rome,
Italy, November 13-15, 2019, Proceedings. Lecture Notes in Computer Science, vol.
11912, pp. 311–317. Springer (2019). https://doi.org/10.1007/978-3-030-342
55-5_21, https://doi.org/10.1007/978-3-030-34255-5_21

9. Recupero, D.R., Spiga, F.: Knowledge acquisition from parsing natural language
expressions for humanoid robot action commands. Inf. Process. Manag. 57(6),
102094 (2020). https://doi.org/10.1016/J.IPM.2019.102094

10. Yoshikawa, N., Skreta, M., Darvish, K., Arellano-Rubach, S., Ji, Z., Bjørn Kris-
tensen, L., Li, A.Z., Zhao, Y., Xu, H., Kuramshin, A., Aspuru-Guzik, A., Shkurti,
F., Garg, A.: Large language models for chemistry robotics. Autonomous Robots
47(8), 1057–1086 (2023). https://doi.org/10.1007/s10514-023-10136-2

11. Zeng, A., Ichter, B., Xia, F., Xiao, T., Sindhwani, V.: Demonstrating large language
models on robots. In: Bekris, K.E., Hauser, K., Herbert, S.L., Yu, J. (eds.) Robotics:
Science and Systems XIX, Daegu, Republic of Korea, July 10-14, 2023 (2023).
https://doi.org/10.15607/RSS.2023.XIX.024

12. Zhang, C., Chen, J., Li, J., Peng, Y., Mao, Z.: Large language models for human–
robot interaction: A review. Biomimetic Intelligence and Robotics 3(4), 100131
(2023). https://doi.org/https://doi.org/10.1016/j.birob.2023.100131

https://doi.org/10.1007/S11042-022-12021-Z
https://doi.org/10.1007/S11042-022-12021-Z
https://doi.org/10.1007/S11042-022-12021-Z
https://doi.org/10.1007/S11042-022-12021-Z
https://doi.org/10.1007/s11042-022-12021-z
https://ceur-ws.org/Vol-2724/paper10.pdf
https://ceur-ws.org/Vol-2724/paper10.pdf
https://doi.org/10.1016/J.FUTURE.2019.10.012
https://doi.org/10.1016/J.FUTURE.2019.10.012
https://doi.org/10.1016/j.future.2019.10.012
https://ceur-ws.org/Vol-2596/paper6.pdf
https://doi.org/10.1186/S13673-020-00235-9
https://doi.org/10.1186/S13673-020-00235-9
https://doi.org/10.1186/S13673-020-00235-9
https://doi.org/10.1186/S13673-020-00235-9
https://doi.org/10.1186/s13673-020-00235-9
https://doi.org/10.3390/FI13020032
https://doi.org/10.3390/FI13020032
https://doi.org/10.3390/fi13020032
https://doi.org/10.3390/fi13020032
https://doi.org/10.1007/978-3-030-34255-5\_21
https://doi.org/10.1007/978-3-030-34255-5_21
https://doi.org/10.1007/978-3-030-34255-5\_21
https://doi.org/10.1007/978-3-030-34255-5_21
https://doi.org/10.1007/978-3-030-34255-5_21
https://doi.org/10.1016/J.IPM.2019.102094
https://doi.org/10.1016/J.IPM.2019.102094
https://doi.org/10.1007/s10514-023-10136-2
https://doi.org/10.1007/s10514-023-10136-2
https://doi.org/10.15607/RSS.2023.XIX.024
https://doi.org/10.15607/RSS.2023.XIX.024
https://doi.org/https://doi.org/10.1016/j.birob.2023.100131
https://doi.org/https://doi.org/10.1016/j.birob.2023.100131

	Integrating Action Robot Ontology for Enhanced Human-Robot Interaction: A NAO Robot Case Study

