RMLdoc: Documenting Mapping Rules
for Knowledge Graph Construction

Jhon Toledo!'®, Ana Iglesias-Molina!®, David Chaves-Fraga?®, and
Daniel Garijo!

! Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
{ja.toledo,ana.iglesiasm,daniel.garijo}@upm.es
2 Grupo de Sistemas Intelixentes, Universidade de Santiago de Compostela, Spain
david.chavesQusc.es

Abstract. In this demo we present RMLdoc, a Python package de-
signed to generate documentation for RML mappings when constructing
knowledge graphs from heterogeneous sources. Given an input mapping
file written in R2RML, RML, or YARRRML, RMLdoc will generate a
detailed Markdown documentation explaining each mapping with corre-
sponding diagrams, in a human readable manner. Thanks to RMLdoc,
we aim to shed light in the knowledge graph construction process, making
mappings easier to maintain and understand by knowledge engineers.
Code repository: https://github.com/oeg-upm/rmldoc/

Demo: https://w3id.org/rmldoc/example

Keywords: Documentation - Knowledge Graph Construction - RML.

1 Introduction

Knowledge Graphs (KGs) are commonly constructed by transforming a set of
heterogeneous data sources (e.g., CSV, JSON files) into RDF graphs. These
transformations are performed by relating all input sources with the target on-
tology terms, and can be described using declarative mapping languages such as
the W3C recommendation R2RML? or its widely adopted extension RML [7]. In-
stitutions such as the European Railway Agency* or the European Commission
(e.g., in the EU Public Procurement Data Space®) describe their transformations
using these languages in some of their projects.

Knowledge engineers are usually responsible for developing the mapping rules
needed to construct KGs. In many cases, these engineers rely on graphical inter-
faces (e.g, RMLEditor [5]) and human-friendly serializations like YARRRML [4]
or Mapeathor [6] to aid them in the creation of mapping rules. However, the
mapping documents resultant from these efforts are, in many cases, complex and
hard to interpret, which reduces their reusability by other engineers. Further-
more, there is a lack of tools to generate a comprehensive and human-readable

3 https://www.w3.org/TR/r2rml/
4 https://data-interop.era.europa.eu/
5 https://europa.eu/!qx9WxQ

https://orcid.org/0000-0002-2924-7272
https://orcid.org/0000-0001-5375-8024
https://orcid.org/0000-0003-3236-2789
https://orcid.org/0000-0003-0454-7145
https://github.com/oeg-upm/rmldoc/
https://w3id.org/rmldoc/example
https://www.w3.org/TR/r2rml/
https://data-interop.era.europa.eu/
https://europa.eu/!qx9WxQ

2 Toledo et al.

documentation of mapping rules. This situation delegates mappings as second-
class resources in the KG development process, without documentation (scat-
tered comments in the mapping document at most) or essential metadata (e.g.,
version, creators, license).

In this paper, we present RMLdoc [8],% an open source Python package de-
signed to create a human-readable documentation of the mapping rules used
to construct a Knowledge Graph. RMLdoc supports mapping rules described
in R2RML, RML, and YARRRML, helping practitioners better understand the
relationships between the original data sources and the ontology terms. To the
best of our knowledge, this is the first approach that proposes the generation of
human-readable mapping documentation. RMLdoc takes one step closer towards
completing technological support for KG-driven ecosystems.

2 Mapping Documentation with RMLdoc

RMLdoc processes R2RML, RML and YARRRML mappings to generate a
human-readable documentation as follows:

Mapping upload and processing. The tool takes as input an existing map-
ping written in R2RML, RML or YARRRML. The mappings documents are
processed as RDF graphs. In the case of receiving YARRRML, these mappings
are first translated into RML using Yatter.” Then, mappings are validated to
check for grammar errors, and next they are loaded internally as a graph. RML-
doc supports both the original proposal of RML [3] and the specification lately
developed by the Knowledge Graph Construction W3C Community Group [7].
Querying and information extraction. The mapping graph is then queried
to extract the relevant information for its documentation: (i) metadata, (ii)
namespaces and (iii) mapping rule sets. First, the metadata of the mapping
document is queried. This information is optional in the mapping, but recom-
mended for improving its documentation (e.g., description, authors, creation
date, license). We retrieve this information taking a mapping document as a
dcat:Dataset or schema:Dataset [2]. Next, the namespaces and prefixes de-
clared in the document are extracted, followed by the elements that compose
the mapping rule sets (in RML, Triples Map). From each rule set, RMLdoc ex-
tracts the data source, subject and predicate-object description, and the joins
performed to create triples with references between different rule sets (in RML,
Join Conditions).

Serialization and writing. The information retrieved in the previous step
is structured and written using Jinja templates® in a Markdown document to
generate the human-readable documentation. Additionally, the triples and joins
documented in each rule set are accompanied with a diagram, automatically
generated with the Mermaid library.”

S https://pypi.org/project/rmldoc/

" https://pypi.org/project/yatter/

8 https://jinja.palletsprojects.com/en/2.10.x/templates/
9 https://mermaid. js.org/

https://pypi.org/project/rmldoc/
https://pypi.org/project/yatter/
https://jinja.palletsprojects.com/en/2.10.x/templates/
https://mermaid.js.org/

RMLdoc: Documenting Mapping Rules for Knowledge Graph Construction 3

GTFS-Madrid-Bench CSV Namespaces used in the document
mapping excerpt — T
Version: gtfs http://vocab.gtfs.org/terms#
* 0.1.0 5
Authors: Mappings
+ Jhon Toledo @ Note

1. Source: This is where you define the source of your data, which can be a relational
database, a CSV file, or any other structured data source. The logical source
Mapping file: example_input.ttl specifies the location and format of your source data.

* Ana Iglesias-Molina

2. Subject: This part of the mapping defines how the data from the logical source will
be used to create RDF subjects, typically using templates and column mappings.

Description: RML mapping with a subset of the GTFS-Madrid-
Bench mapping for CSV files.

3. Predicate Object: These describe how the data from the logical source will be used
Date created: 03-05-2024 to generate RDF triples, indicating relationships between subjects and objects.

License: 4. JoinCondition: is used to specify the conditions under which two data sources or

tables should be joined when creating RDF triples through mappings.
a) Metadata. b) Namespaces and general information.

frequencies « RDF triples

* Source
———— gtfs:Frequency

/data/FREQUENCIES. csv

tfs:startTime——> {start_time}
* Subject /

http://transport. linkeddata. es/madrid/metro/ http://transport. linkeddata.es/madrid/metro frequency!/{trip_id]-{start_time} ———gtfs:endTime—— {end_time}
frequency/{trip_id}-{start_time}

" : gtfstheadwaySeconds— {headway_secs}
* Predicate Object

Predicate Object
gtfs:exactTimes— {exact_times}
a gtfs:Frequency
+ joinCondition:
gtfs:startTime {start_time}

o Source triple pattern: <frequencies_0>
gtfs:endTime {end_time} o Target triple pattern: <trips_0>

gtsheadwa nds {headway_secs} o Function: equal(trip_id, trip_id)

gtfsexactTimes {exact_times} linkeddat _id)-(start_time} linkeddat id)

¢) Triples map components description with visual depictions.

Fig.1: Demo example from https://w3id.org/rmldoc/example.

Figure 1 shows a demo example documentation for a mapping subset of
the GTFS-Madrid-Bench [1], showing how the mapping information is struc-
tured in the Markdown file: the mapping metadata (Fig. la) including title,
version, authors, file name, description, creation date, and license; the prefixes
used and a brief conceptual description of the mapping components (Fig. 1b);
and a exemplary rule set (frequencies, Fig. 1c). The diagram shows the essen-
tial mapping elements in a human-friendly manner, adding a visual aid while
avoiding introducing constructs from the languages that are not necessary for

the comprehension of the transformation rules.

The source code of RMLdoc is openly available under Apache 2.0 license.!?

Following open science best practices, each release automatically generates a
dedicated DOI [8]. Additionally, the tool is available in PyPi as a package.’

10 https://github.com/oeg-upm/rmldoc

https://w3id.org/rmldoc/example
https://github.com/oeg-upm/rmldoc

4 Toledo et al.

3 Conclusions and Future Steps

In this paper we present RMLdoc, a Python library designed to generate human-
readable documentation for mappings used in declarative knowledge graph con-
struction. This tool processes mapping documents written in either RML, R2RML
or YARRRML and produces a Markdown file with the essential information for
understanding the transformation rules, also depicting them in visual diagrams.
As future steps, we plan to extend the tool further to consider named graphs,
and be fully compliant with all modules of the new RML specification [7], as
well as to allow metadata annotation on the Triples Map level. We also plan
on supporting HTML export and launching the tool as a GitHub action, with
the aim of facilitating an effortless documentation during the KG development
process. This is the first approach developed for documenting mapping rules
for knowledge graph construction, which we believe that it is a necessary step
towards the governance of the artifacts involved in KG-driven ecosystems.

Acknowledgments

David Chaves-Fraga is funded by the Galician Ministry of Education, Univer-
sity and Professional Training and the European Regional Development Fund
(ERDF/FEDER program) through grants ED431C2018/29 and ED431G2019/04.

References

1. Chaves-Fraga, D., Priyatna, F., Cimmino, A., Toledo, J., Ruckhaus, E., Corcho,
O.: GTFS-Madrid-Bench: A benchmark for virtual knowledge graph access in the
transport domain. Journal of Web Semantics 65, 100596 (2020)

2. Dimou, A., De Nies, T., Verborgh, R., Mannens, E., Mechant, P., Van de Walle, R.:
Automated metadata generation for linked data generation and publishing work-
flows. In: Workshop on Linked Data on the Web (LDOW@WWW 2016). CEUR
Workshop Proceedings, vol. 1593 (2016)

3. Dimou, A., Sande, M.V., Colpaert, P., Verborgh, R., Mannens, E., Van De Walle,
R.: RML: A generic language for integrated RDF mappings of heterogeneous data.
In: Workshop on Linked Data on the Web (LDOWQ@WWW 2014). CEUR Workshop
Proceedings, vol. 1184 (2014)

4. Heyvaert, P., De Meester, B., Dimou, A., Verborgh, R.: Declarative Rules for Linked
Data Generation at your Fingertips! In: ESWC 2018 Satellite Events. vol. 11155,
pp. 213-217. Springer, Cham (2018)

5. Heyvaert, P., Dimou, A., Herregodts, A.L., Verborgh, R., Schuurman, D., Mannens,
E., Van de Walle, R.: RMLEditor: A Graph-based Mapping Editor for Linked Data
Mappings. In: Extended Semantic Web Conference (ESWC 2016). pp. 709-723.
Springer (2016)

6. Iglesias-Molina, A., Pozo-Gilo, L., Dona, D., Ruckhaus, E., Chaves-Fraga, D., Cor-
cho, O.: Mapeathor: Simplifying the specification of declarative rules for knowledge
graph construction. In: ISWC 2020 Demos and Industry Tracks. CEUR Workshop
Proceedings, vol. 2721 (2020)

RMLdoc: Documenting Mapping Rules for Knowledge Graph Construction 5

7. Iglesias-Molina, A., Van Assche, D., et al.: The RML Ontology: A Community-
Driven Modular Redesign After a Decade of Experience in Mapping Heterogeneous
Data to RDF. In: International Semantic Web Conference (ISWC 2023). pp. 152—
175. Springer (2023)

8. Toledo, J., Chaves, D., Iglesias-Molina, A., Garijo, D.: oeg-upm/rmldoc: rmldoc
0.1.5 (Mar 2024). https://doi.org/10.5281/zenodo.10797980

https://doi.org/10.5281/zenodo.10797980

	RMLdoc: Documenting Mapping Rulesfor Knowledge Graph Construction

