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The scale of decentralization envisioned for the presently centralized
web requires querying approaches that can query numerous small data sources in‐
stead of a few large ones. Link Traversal-based Query Processing (LTQP) is a
promising candidate  for  querying  highly  decentralized  environments  that  exe‐
cutes queries with zero knowledge of the queried data and discovers data sources
on the fly. However, as the engine does not know in advance what data will be
queried, creating an optimized query plan before executing the query is challeng‐
ing. Presently, LTQP is employed for client-side querying, where one engine in‐
stance services a single client. Despite this, current engines do not utilize client-
specific engine query usage patterns to implement personalized query optimiza‐
tion algorithms. This paper will describe the proposed research approach for im‐
plementing  personalized  query  optimization  techniques,  such  as  caching  or
learned query optimizers, for LTQP. The objective is to improve query optimiza‐
tion algorithms through the analysis of historical query engine usage, instead of
depending  on  additional  prior  information.  Personalized  optimization  will  be
based on existing work in SPARQL optimization literature and fundamental data‐
base theory, adapted to LTQP, and aimed at repeating their success in reducing
query execution time. As a result, query engines will gain the capability to query
large decentralized environments,  enabling applications to function within this
emerging decentralized web landscape.

1. Introduction

Currently, web user data is stored in centralized silos controlled by massive compa‐
nies like Facebook, Google, and Amazon. These companies control the data generated
by web users, restricting innovation [1]. Rather than adopting a ‘vertical’ approach
where all user data from a single service is stored in one central location, various de‐
centralization efforts [2, 3], advocate for a ‘horizontal’ approach. This approach dis‐
perses data, resulting in many smaller data entities. For instance, all data pertaining to
an individual would be stored in a singular location. As a result, data becomes highly
decentralized, spread over possibly millions of sources. Decentralized querying ap‐
proaches must support cross-source queries, as, for example, social media applica‐
tions  frequently  aggregate  content  from  various  users  to  construct  a  homepage.
Initiatives like Solid use the Resource Description Framework (RDF) to store data in
a machine-readable format.  Traditional SPARQL query algorithms are designed to
query a singular RDF store, which is known beforehand. This approach is insufficient
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for  decentralized  environments,  as  there  are  multiple  sources,  and  the  number  of
sources is not known beforehand.
Federated SPARQL query algorithms [4, 5] are built to query a few large sources [6, 
7] known ahead of time and do not support fine-grained access control. This is insuf‐
ficient for decentralized environments comprising numerous, small, and highly per‐
sonal data requiring access control. Instead, querying over these decentralized envi‐
ronments can be done by Link Traversal-based Query Processing (LTQP) [8]. LTQP
is an integrated querying approach where the query engine dynamically discovers
sources by following hyperlinks discovered in documents of previously dereferenced
URIs. This approach allows for fine-grained access control, as an LTQP engine can
ignore any document it cannot dereference and continue traversing to new documents.
Furthermore, LTQP requires no prior knowledge of the location of data sources, as
this is discovered on the fly.
Despite these advantages, LTQP still suffers from significant limitations [9], as dis‐
cerning relevant from irrelevant data sources during query execution is difficult [10],
and query planning without pre-computed statistics often produces suboptimal query
plans. Current literature on LTQP considers each query as a separate event without
considering the usage of  shared engine state  between query executions.  However,
LTQP is a client-side query approach where an engine instance exclusively services a
single client. As seen in, for example, browser usage [11],  clients  exhibit  patterns
when using applications or browsing the internet. These patterns translate to observ‐
able patterns in the queries issued to the query engine. For example, users might pri‐
marily use a singular application, which only requires a subset of all data available in
the decentralized ecosystem. Additionally, users form sub-communities [12]  within
applications, which can potentially induce sub-graphs of data that are more frequently
accessed by members of the sub-community. Query engines should quantify these pat‐
terns and leverage them for significantly improved query optimization. When an en‐
gine has already seen a large portion of the data in previous queries, it can use previ‐
ously computed answers, statistics, and indexes to improve query performance. To ad‐
dress this gap in research, I will reformulate the query optimization problem from sin‐
gular queries to a sequence of (possibly) correlated queries. As such, query engines
can  apply  personalized  client-specific  query  optimizations  based  on  the  statistical
properties of these patterns to improve average query sequence execution time.

2. State of the Art

First, existing approaches for LTQP optimization must be considered. Then, the fol‐
lowing sections will discuss existing SPARQL optimization approaches that can be
adapted for personalized LTQP optimization.

2.1. Optimizing LTQP

The literature on LTQP optimization aims to improve the execution plan of queries
and the prioritization of query-relevant documents. Identifying query-relevant docu‐
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ments is relies on link prioritization algorithms, which aim to identify query-relevant
documents and access them first. On the other hand, LTQP query planning relies on
heuristics [13]. These heuristics, which use no prior knowledge, employ four rules to
establish the evaluation order of operators. Firstly, they prioritize triple patterns with a
designated seed document,  except  when the  seed document  represents  vocabulary
terms. Moreover, they favor query plans featuring filtering triple patterns in proximity
to the seed triple pattern. Finally, they create an order where preceding triple patterns
contain at least one query variable of the subsequent pattern.
While multiple algorithms [10] for link prioritization exist for the Open Linked Data
Web, none show a definitive advantage over others. However, in structured decentral‐
ized environments like Solid, previous work [9], demonstrates improved query execu‐
tion speed when leveraging structural information inherent to such environments.
These studies usually assume limited prior data knowledge. However, if our engine
frequently queries the same dataset, the hypothesis is that leveraging prior knowledge
obtained from previous query executions can boost query performance.

2.2. SPARQL Caching Strategies

In SPARQL, server-side caching optimizes query performance by storing and reusing
computations [14, 15]. While caching entire query results is possible, most strategies
focus on frequently encountered basic graph patterns (BGPs) [15]. These BGPs can
substitute joins in query plans and influence join optimization [14]. Canonical label‐
ing algorithms assign distinct labels to isomorphic BGPs, ensuring that all isomorphic
BGPs receive equivalent labels [14]. Other server-side caching approaches [15] utilize
data summaries to compute join reductions and cache these reductions rather than
caching query results. Client-side caching aims to minimize requests to SPARQL end‐
points  by  caching  complete  query  results  [16]  and  implementing  proactive  query
fetching [17]. The efficacy of such strategies heavily depends on the cache hit rate. To
decide which queries to prefetch, machine learning techniques predict probable subse‐
quent queries based on the current query [16]. When the cache reaches capacity, cache
eviction algorithms, such as Least Recently Used (LRU), remove the least recently re‐
quested entry.

2.3. Auxillary Data Structures

In this section, we’ll briefly examine data structures used by query engines to opti‐
mize query plans. While these are typically precomputed offline, making them im‐
practical for LTQP, caching and dynamically discovering them during LTQP query
execution  could  allow  the  LTQP engine  to  use  traditional  SPARQL optimization
strategies. Potential structures include:

• Dataset summaries, such as the Vocabulary of Interlinked Datasets (VoID) [18],
describe statistical information of the underlying dataset. This information can
include the number of triples, distinct subjects or predicates, and the occurrences
of predicates.

• Characteristic sets [19], which define entities sharing the same predicate set
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present in the data. Characteristic sets are instrumental in estimating the cardinal‐
ity of star-shaped joins, thereby enhancing join planning. These sets can be esti‐
mated using sampling techniques [20], reducing the cost of computing them.

• Approximate  Membership  Functions  (AMFs),  which  determine  whether  a
dataset  can  potentially  contain  answers  to  a  query.  Examples  of  AMFs  are
Prefix-Partitioned Bloom Filters (PPBFs) [21]  and the  extended Semantically
Partitioned Bloom Filters (SPBFs) [22].

• Indexes, which are utilized to accelerate the lookup of matching triples to triple
patterns. Engines calculate different combinations of SPO indexes depending on
their implementation.

2.4. Learned Optimizers

Recent literature on learned query optimizers in relational databases [23, 24] is gain‐
ing traction, utilizing reinforcement learning to train the optimizer. Queries are trans‐
formed into numeric vectors containing information crucial for query planning, with
various featurization methods, such as one-hot encoding join predicates [25] or utiliz‐
ing advanced graph neural networks on the query graph [23]. The next step involves
greedily constructing a join plan to minimize predicted execution cost or latency. To
predict latency, ReJOIN [25] employs a feed-forward neural network, while newer ap‐
proaches use tree-based neural networks to handle the tree structure of join plans [23, 
24]. The model is trained to minimize the difference between predicted and actual
query latency or cost. While most approaches train optimizers from scratch, Bao [24]
augments traditional optimizers by learning to select optimal query hints from a pre‐
defined set, reducing training costs significantly while improving over traditional op‐
timizers. In the SPARQL query optimization literature, several cardinality estimation
techniques [26] using machine learning are highly successful. Learned optimizers op‐
erate under the assumption that there is prior knowledge of the data to be queried, al‐
lowing models to be trained offline. However, in the case of an LTQP engine, the data
queried is not known beforehand and dependent on the queries issued, rendering off‐
line model training impractical. Thus, the model must learn optimization strategies
dynamically as users actively issue queries.

3. Problem Statement and Contributions

Building upon the existing work in Section 2, this thesis will use personalized query
optimization to overcome the performance issues outlined in Section 1. Personalized
query optimization adapts the optimization procedure to the client-specific query us‐
age  patterns  of  the  engine.  As  such,  the  engine  will  keep  a  state  that  stores
optimization-relevant information. The hypothesis underlying this work is:

• Hypothesis 1: Personalized query engines can significantly improve query exe‐
cution times compared to non-personalized query engines by leveraging client-
specific query patterns to improve query optimization.
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Before any work on personalized query optimization can proceed, real-world client
query usage patterns must be identified. These patterns can include but are not limited
to, application data requirements, query requirements for different applications, and
data update frequency. After the identification of query patterns, they should be trans‐
lated to an extensive benchmark that can validate the performance of personalized
query optimization algorithms in real-world applications. As such, we define research
question I.

• RQ I: How do client-specific query patterns manifest in real-world usage scenar‐
ios, and how can we accurately capture and represent them within a benchmark?

This  thesis  will  explore  two approaches  to  personalized optimization.  The  use  of
caching auxiliary data structures or (intermediate) results, and learned query optimiz‐
ers. Two natural candidates for cached content are intermediate results sets for queries
or auxiliary data structures that improve query planning. However, LTQP uses the
cMatch criterion [27] to extract links to dereference, changing the queried data de‐
pending on what predicates are used in the query. Consequently, queries with overlap‐
ping sub-BGPs, but different sets of predicates will dereference different documents
during query execution. As reusing the result set for the overlapping sub-BGPs of one
query on another can generate wrong results, it is vital to evaluate the effectiveness of
caching strategies under these conditions. These conditions lead to research questions
II & III.

• RQ II:  Can  (intermediate)  result  caching  be  effectively  utilized  during  Link
Traversal-based  Query  Processing  to  enhance  query  execution  performance
when the queried subweb of data changes between queries?

• RQ III: How does caching auxiliary data structures during Link Traversal-based
Query Processing impact the performance of query execution?

Our caching approaches will build upon and extend methods introduced in Section 2.
The primary challenge to overcome in LTQP is the dynamic nature of the queried
data, as it can differ between queries, influencing cache validity.
Finally, learned optimizers are a promising candidate for extracting query usage pat‐
terns from sequences of queries. Formulating the client query usage patterns as a data-
generating process (DGP) and the queries as samples from this process, we can use
learning methods to approximate this DGP. However, learning methods can be data
and compute expensive and require exploring sub-optimal query plans to learn the en‐
tire optimization space. As learned optimizers will be trained in an online scenario
where the client actively uses the engine, we must design any solutions with data and
compute efficiency in mind. This gives us research questions IV & V:

• RQ IV Can training a query optimizer lead to improved query performance in
Link Traversal-based Query Processing?

• RQ V: Does the query performance benefit of training a query optimizer during
query execution outweigh the model training cost?

To answer these research questions, the proposed methods will build upon existing lit‐
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erature for learned cardinality and join plan estimation. From this foundation, data
and compute efficiency approaches will be included to facilitate the usage of learned
estimation for LTQP.

4. Research Methodology and Approach

The work in this thesis is divided into three packages. The first aims to answer RQ I,
the second provides an answer to RQ II & III, and finally the third will investigate
RQ IV & V.

4.1. Identification and Simulation of Client-Specific Query Usage Patterns

Evaluating the effectiveness of personalized query optimization algorithms requires a
benchmark simulating real-world query patterns. To identify these patterns, the first
step is a literature review on sub-communities in social media networks and the use of
linked data in existing applications. This literature review will be used in the creation
of a theoretical framework outlining various client query usage patterns in social me‐
dia and linked data.
An existing benchmark, SolidBench [9], simulates a social network application’s data
that is fragmented to represent Solid data vaults. Extending SolidBench using the the‐
oretical framework of client query usage patterns allows for simulated client-specific
query sequences, representing real-world sub-communities and access patterns. The
degree of fragmentation and separation between communities and the probability of
within-community queries will be an adjustable parameter to enable the analysis of
how varying degrees of client-specific query patterns influence personalized query
optimization performance.

4.2. Caching in the Context of Link Traversal-based Query Processing

While caching entire query results is straightforward, caching intermediate results in
LTQP is complicated as the queried data changes depending on the query predicates.
Intermediate result caches must be aware of the underlying documents that produced
these results to allow the engine to identify over what data these intermediate results
are valid and what data is not included in the cached results. To answer RQ II,  an
adaptive query planner that can adaptively change its execution plan to include inter‐
mediate results  that  are valid for  the currently dereferenced documents is  needed.
Using cached intermediate results, we can reuse computation, quickly check docu‐
ment cache validity through ETags, and produce first results faster. This query planner
will need to consider three cases. The first case is where the intermediate results con‐
tain results produced using undiscovered data. In this case, careful pruning of cache
elements is required. Second, the cache can contain less data than discovered during
query execution. In this case, the query planner should first use all valid intermediate
results to quickly produce answers before including the additional data in the query
execution to ensure result completeness. Finally, these two cases can occur simultane‐
ously, which will require a combination of the solutions of the previous cases. The
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proposed query planner must be adaptive, as the validity of the cache can change as
more documents are discovered.
For  RQ  III,  an  investigation  into  the  effect  of  the  data  structures  described  in
Subsection 2.3 is required. Data structures like approximate membership functions,
dataset summaries, and characteristic sets can be used to determine whether a docu‐
ment can produce answers to a given query. Documents that will never return results
to the query can be pruned, reducing the queried data size and improving query exe‐
cution times. Additionally, dataset summaries and characteristic sets can be used to
improve cardinality estimation as they are discovered. This allows the engine to im‐
prove  its  query  plan  resulting  in  reduced  computational  complexity  of  the  query.
Finally, the possible upside of indexes is clear. Currently, these indexes are computed
as the engine dereferences a document, which is computationally intensive. If the en‐
gine can reuse indexes from previous queries,  we bypass  the  need to  re-compute
them.
The fundamental risks of all caching approaches are the overhead of maintaining the
cache and the possibility of cache invalidation. If searching the cache for relevant en‐
tries is too computationally intensive and the cache hit rate is low, the engine will
spend more time searching the cache than it saves using cache entries. To account for
this risk, this thesis will first investigate caching approaches requiring the least com‐
plex cache keys, like document-based caching, or query result caching. After success‐
fully applying the straightforward caching approaches complex tasks will be consid‐
ered. For cache invalidation, we must account for the possibly rapidly changing data
landscape in social  media applications.  However,  even when many new  posts  are
added, cached information for old and unchanged content remains valid and can im‐
prove query execution performance. Furthermore, even if the query is primarily over
the subset of data that rapidly changes, caching the static content in social-media ap‐
plications can inform the engine of their (ir)relevancy, reducing the queried data size
and improving performance. To determine whether a cached entity is valid, we can
use the ETag header or introduce data vault server-side data structures that indicate
the last change to a resource.

4.3. Learned Query Optimization in Link Traversal-based Query Processing

To answer RQ IV, personalized query engines need learned query optimization algo‐
rithms that work in an online setting since LTQP engines do not know what data they
will query in advance. As such, any offline training algorithm that requires millions of
training examples is infeasible. My previous work in SPARQL join order optimiza‐
tion [28] shows that while reinforcement learning-based join order optimization is
promising, it is computationally expensive to train an optimizer from scratch. Instead,
learned query optimization hint approaches [24, 29] train models that give hints to ex‐
isting optimizers, like what join operator to use. These approaches require signifi‐
cantly less training time and are thus more suitable for online learning. To answer RQ
IV & V, relational learned query optimization hints will be adapted for use in LTQP.
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5. Evaluation Plan

The evaluation of this work will be done by implementing prototype algorithms on
their own, or in combination with other prototypes.

• The prototypes will be built into a modular open-source LTQP query engine [5].
By implementing our approach as modules, other researchers can easily replicate
and extend these approaches.

• The primary evaluation method is the benchmark introduced in Subsection 4.1.
The benchmark will simulate varying intensities of observed query patterns to
determine the impact this has on performance. Further evaluation on different
benchmarks will be included if valuable and compatible with LTQP.

The evaluation of query optimization performance will follow evaluation approaches
of previous work on LTQP. In practice, the following metrics are often used as gauges
of performance:

• Query execution time, indicating overall query execution efficiency.
• First k result arrival times, as LTQP is a streaming querying approach, produc‐

ing first results quickly improves the client experience.
• Diefficiency [30], measures the efficiency of result arrival times during query

execution. Engines that quickly produce many results are considered better.
• Result completeness, as any caching or document pruning strategy could intro‐

duce mistakes, result completeness will be verified and ensured during evalua‐
tion.

These  metrics  will  be  used  to  compare  the  state-of-the-art  approaches  for  non-
personalized  LTQP  optimization  to  our  intended  personalized  optimization  algo‐
rithms.
For further analysis of the caching approaches in Subsection 4.2, cache hit rate and
overhead will be investigated. The preceding metrics will provide a clear picture of
the effectiveness of personalized query optimization for LTQP.

6. Preliminary Results

Initial work was primarily focused on the exploration of the literature around rela‐
tional database optimization, SPARQL query optimization,  caching theory,  learned
optimization, and more. Following an extensive literature review, the next step was an
exploration of the problem space. To facilitate an understanding of LTQP, I produced
an early-stage visualization tool of how LTQP engines explore the decentralized envi‐
ronments and an in-depth analysis of the document links discovered during query exe‐
cution [31]. Moreover, I established a software framework to facilitate the subsequent
implementation of LTQP optimization algorithms. This was achieved by enabling the
engine to associate metadata with each triple processed during query execution.
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7. Conclusion

In this thesis, the query optimization problem is reformulated as an optimization prob‐
lem over a sequence of correlated queries. These correlations are hypothesized to oc‐
cur due to client-specific query usage patterns during the usage of LTQP query en‐
gines.  In this context,  personalized query optimization can identify patterns in se‐
quences of queries and use them to adapt the query optimization approach. This thesis
aims to use caching and learned query optimizers to identify and leverage patterns in
query sequences. As a result, LTQP engines will become more efficient without rely‐
ing on pre-computed statistics and optimizations. The enhanced efficiency of LTQP
engines will subsequently improve the responsiveness and practicality of decentral‐
ized applications, thus bringing a decentralized web one step closer.
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