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Abstract. As the usage of RDF knowledge graphs (KGs) becomes more
pervasive in practical applications, there is a burgeoning need for high-
quality RDF data. The SHApes Constraint Language (SHACL) enables
precise constraint expression on RDF graphs, ensuring data structure
compliance. However, a SHACL validation that overlooks the crucial
implicit information encoded in the ontology of the KG may result in
unsound results. Semantic-aware SHACL validation addresses this by
considering implicit information in RDF graphs, thus enabling thor-
ough and accurate data validation. Current methods that incorporate
entailment into SHACL validation often face efficiency challenges due
to the resource-intensive nature of applying inference rules across en-
tire datasets. In this doctoral work, we explore methods to enhance the
efficiency of semantic-aware SHACL validation, presenting the problem
statement, research questions, hypotheses. The paper concludes by our
proposed method and sharing preliminary results from our research.
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1 Introduction

SHACL (SHApes Constraint Language) has been recommended by the W3C for
the validation of knowledge graphs (KGs) modelled in RDF. As a language for
expressing constraints on RDF graphs, SHACL enables the definition of RDF
data structures, such as required properties, acceptable datatypes, and allowable
values for specific properties. The process of SHACL validation acts as a safe-
guard, ensuring adherence to predefined schemas within RDF graphs, thereby
enhancing the quality and interoperability of data [30], and paving the way for
the development of advanced automated applications [21] [24].

Semantic-aware SHACL validation refers to the process of using the SHACL
framework to validate RDF graphs under the context of semantics and inference.
The incorporation of entailment enables SHACL engines to identify implicit re-
lationships between entities, properties, and classes, thus achieving a thorough
and accurate data validation. However, Corman et al. [7] have shown that the
validation of RDF graphs against SHACL constraints, especially when involving
recursion, is an NP-hard problem. Incorporating reasoning on top of SHACL
validation adds another layer of complexity. Furthermore, SHACL lacks native
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(a) Data graph (b) Shapes graph

SELECT * WHERE { $e1 :bP ?p ; :bC ?c1 . ?e2 :bP ?p ; :bC ?c2 . FILTER (?c1 != ?c2) }

(c) SPARQL query for expressing the functional depency of sh:s3

Fig. 1. Motivating example. Shape sh:s1 states every person should have at least one
:name; and sh:s2 states every person should have exactly one owl:sameAs property.

support for certain highly expressive constraint types, such as functional de-
pendencies (FDs), making their implementation in SHACL less efficient. FDs
state that some properties values are determined by the values of another set
of properties. For instance, consider the example in Fig. 1, we verify for all
:Person instances that :birthPlace → :birthCountry in sh:s3, i.e., if two
people share the same birthplace, their birth countries should be the same. To
achieve this, we have to implement SHACL validation using a SPARQL query
in Fig. 1(c). Additionally, shapes graphs obtained with mining processes [27]
often include numerous logically redundant constraints, leading to unnecessary
repetitions in the validation process and consuming excessive computational re-
sources. Besides, enabling entailment can lead to undesired behaviours. These
issues often stem from the inherent reflexive nature of certain properties within
the entailment framework, for instance, when following the non-Unique Name
Assumption (nUNA) with owl:sameAs in KGs. To illustrate the effects of entail-
ment, consider the example in Fig. 1. Without OWL reasoning, :Bob conforms to
sh:s1, as it is not an instance of the :Person class. Yet, this is interpreted as a
false positive, as when considering the domain of :birthPlace, it is entailed that
this entity should be targeted by this shape. Therefore, with reasoning, the con-
clusion is that :Bob violates sh:s1. Moreover, reflexive properties can produce
spurious validations with reasoning. Without reasoning, :Bob does not conform
to sh:s2. This result is correct. However, with reasoning, due to the reflexiv-
ity of the owl:sameAs property, we entail the triple (:Bob,owl:sameAs,:Bob),
for which :Bob now conforms to sh:s2. This result can be considered spurious,
as the conformance of the shape is due to redundant data entailed during the
reasoning process and not due to the actual structure of the data graph. Be-
sides, because of the nUNA, the violations found for :Emily are also reported
for :Emili, which quickly inflates the validation reports with duplicate results.
These show the importance of considering semantics to produce accurate results.

This doctoral dissertation is focused on tackling unresolved issues to enhance
the efficiency of semantic-aware SHACL validation. Specifically, it delves into:
(i) devising efficient strategies for integrating FDs within SHACL, (ii) reducing
redundancy in shapes graphs to prevent repetitive validations, and (iii) investi-
gating approaches to efficiently incorporate reasoning into SHACL validation.
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2 State of the Art

First, as the problem of constraint validation has been extensively studied in
other data models, we briefly revisit related work for relational databases and
semi-structured sources. Then, we analyse rule-based validation approaches over
KGs which is closely related to this thesis. Lastly, we position our work w.r.t.
state-of-the-art SHACL validators over KGs that do not incorporate entailment.

Validation over other data models. The problem of constraint validation has been
widely investigated in the context of data quality over the relational model and
XML. The techniques for the relational model and databases focus on the discov-
ery of different types of constraints, namely, functional dependencies (FDs), con-
ditional FDs, pattern FDs, edit rules, denial constraints (e.g. [4, 8, 10, 26]). Most
of these works present techniques to efficiently validate whether relations conform
to the specified constraints. Other solutions present techniques to repair viola-
tions of these constraints (e.g. [2, 16, 20]). Although SHACL Core can express
edit rule constraints well, it does not provide built-in constraint types for FDs
constraints. Real-world scenarios require more complex shapes and SPARQL-
based constraints (sh:sparql) to accurately implement and enforce FDs in RDF
data using SHACL [15]. In comparison to these works, we do not present a val-
idation or repair engine, but rather the strategies to apply targeted reasoning
to the RDF graph and the shapes graph (with the constraints) to incorporate
the semantics of ontologies using entailment regimes. Also, the aspect of rea-
soning in our work is not the same as the notion of “reasoning over functional
dependencies” [8] also studied in databases. The latter typically involves apply-
ing Armstrong’s axioms (reflexivity, augmentation, transitivity), computing the
closure of attribute sets and analyzing normalization to ensure a well-designed
database. Similarly to the literature on the relational model, several works have
focused on the validation of semi-structured data models [17] and XML doc-
uments [3, 9] with different types of constraints, including keys, foreign keys,
integrity constraints, functional dependencies, and embedded dependencies.

Rule-based validation over KGs. Several approaches support the inclusion of rules
for SHACL validation. These rules can be defined in entailment regimes (e.g.,
RDFS, OWL) or in (domain-specific) inference rules. These approaches follow
mainly two types of validation strategies, which extend the data graph or the
shapes graph to incorporate the rules. Then, the actual validation process can
be carried out with an off-the-shelf validator using the extended structures. One
of these strategies relies on materializing the closure G∗ of the data graph G for
the set of rules; this strategy can be applied only in the presence of rules that
do no introduce the existence of nodes that are not explicit in the original graph
G. This strategy is implemented by pySHACL [29], which currently supports
the entailment regimes RDFS [14] and OWL 2 RL [23]. The main drawbacks
of this strategy are that G∗ can be expensive to compute, and it contains a
large number of redundant, inferred triples, exacerbating the performance of the
validation process. A second strategy relies on rewriting the shapes graph S into
a graph S ′, which extends the shapes to incorporate the information encoded
in the inference rules. The works by Ahmetaj et al. [1] and Savković et al. [28]
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provide formal shapes re-writings to incorporate the OWL 2 QL entailment
regime into SHACL validation. These works provide guarantee the correcteness
of SHACL validation with OWL 2 QL entailment. However, these works do not
handle the semantics of the owl:sameAs predicate, as more expressive fragments
of OWL 2 are required for this. Thus they cannot address the challenges posed
by the nUNA in real-world scenarios. Validatrr [22] also applies shapes rewriting
to support certain OWL features during SHACL validation. The main limitation
of this work is that it does not provide theoretical guarantees, therefore, some
OWL constructs may generate an exponential number of possible rewritings.
To mitigate the issues of the two aforementioned strategies, a hybrid strategy
can be applied where the inference and shapes rewriting is carried out in a
targeted manner. For instance, the solution by Pareti et al. [24, 25] extends
the data graph schema and rewrites the target queries and the constraints to
incorporate inference rules. Another way of incorporating entailment regimes in
validation is to decide SHACL shape containment. Leinberger et al. [19] explored
how to determine SHACL shape containment using description logic reasoning,
providing a formal approach to constraint validation in RDF data graphs. In
this doctoral work, we will use these results to rewrite SHACL constraints into
simpler, equivalent ones (without redundancy) that can be validated efficiently.

Validation without entailment over KGs. Other approaches [5, 29, 11] focus on
the problem of efficient SHACL validation directly over the data graph, without
considering the semantics of ontologies and entailment regimes. In contrast to
these approaches, we propose solutions that enhance the shapes and data graph
to remove redundancies and account for entailment regimes, before the actual
validation is carried out. Therefore, our solution can be used in combination
with any state-of-the-art SHACL validator.

3 Problem Statement and Contributions

SHACL validation requires two inputs, formally defined as follows [6, 7]: the data
graph G is an RDF graph to be validated, and the shapes graph S which is a
set of shapes defined as a triple ⟨s, targs, φs⟩, where s is a shape name, targs is a
(possibly empty) monadic query to a shape to retrieve the focus nodes, and φs

is a constraint formula for s. The validation of S over G is denoted JSKG [7].
The semantic-aware SHACL validation checks the conformance of the data

graph G following an entailment regime E to a shapes graph S. In this case,
the implicit information in G entailed by E can be taken into account in the
validation process. We denote with JSKG,E the validation of S over G under E .

In practice, the computation of the validation result is executed by a vali-
dation strategy. We denote a SHACL validation strategy by S and the universe
of strategies by S. To generate a validation result, a strategy S is executed on
a given data graph G under the entailment regime E against the given shapes
graph S, which we denote by S(S, G, E). Then, we use the execution runtime of
the strategy time

(
S(S, G, E)

)
to evaluate its efficiency. Therefore, we formalize

our problem statement as the following optimization problem:
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Problem Statement (Efficient SHACL Validation under Entailment): Given a
data graph G, a shapes graph S, and an entailment regime E . The problem of
efficient SHACL validation under entailment is defined as devising a validation
strategy S ∈ S that minimizes the execution runtime while devising all violations
to the shapes graph S over the data graph G under the entailment regime E :

argmin
S∈S

(
time

(
S(S, G, E)

))
, subject to S(S, G, E) = [[S]]G,E .

Contributions. To tackle this research problem, our novel contributions rely on
the investigation of the following research questions:

RQ1 Expressiveness of SHACL Constraints:

– What is the expressivity of SHACL constraints w.r.t. constraints in other
data models (e.g., edit rules or denial constraints)?

– How to validate expressive constraints (e.g., functional dependencies) effi-
ciently in SHACL?

RQ2 Elimination of Redundancy in the Shapes Graph:

– How to remove duplicate constraints in the shapes graph when the validation
does not consider reasoning?

– How to eliminate redundant constraints in the shapes graph when the vali-
dation includes reasoning?

RQ3 Efficient Reasoning over Data Graphs for Validation:

– How to reason over data graphs to improve the efficiency of SHACL valida-
tion with entailment?

– How to cope with the possible negative impact of nUNA on SHACL valida-
tion when enhancing RDF graphs through reasoning in OWL?

These research questions lead to our following hypothesis:

H1 Implementing highly expressive constraints such as FDs in SHACL typically
requires the use of SPARQL expressions. Still, these constraints can be real-
ized in SHACL without SPARQL by enhancing the data and shapes graphs.

H2 Shape rewriting can eliminate redundancy within the shapes graph while
maintaining the expressiveness of the original one.

H3 Constraint-guided reasoning over the data graph allows for incorporating the
semantics encoded in the ontology, while quickly producing a materialized
graph that can be validated efficiently.

4 Research Methodology and Approach

The upcoming research and contributions aim to address the research questions
posed by enhancing the data graphs and shapes graphs before validation. The
methodology implemented for this doctoral research is structured as follows:

1. Exploration of state-of-the-art techniques. This involves a thorough review of
existing literature pertinent to the problem at hand, focusing on constraints
validation within the realms of Databases and Semantic Web.
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Fig. 2. Overview of our approach.

2. Research questions and hypotheses formalization. The research problem is
clearly defined, leading to the formulation of specific research questions and
hypotheses to guide the investigation.

3. Devising the solutions. Solutions are conceptualized to address the formu-
lated hypotheses, focusing on the innovative aspects that these solutions
bring to improve the efficiency of SHACL validation.

4. Theoretical and empirical analyses. The proposed solutions are analyzed rig-
orously in terms of their theoretical properties and performance in practice.
This includes a detailed examination of the solutions’ theoretical complexity
to ensure their feasibility, and a comparative experimental evaluation against
the state of the art to assess our solutions practical performance. The exper-
imental steps are: (i) selecting the datasets, baseline methods and metrics
to be used, (ii) developing experimental plans and evaluation strategies for
the research questions, adapting existing benchmarks and evaluation met-
rics as needed, (iii) running our approaches and baseline methods according
to the experimental plan, and (iv) analyzing experimental results to draw
meaningful conclusions about the effectiveness and efficiency of the solutions.

We will propose corresponding approaches for each of our stated research
questions. Fig. 2 depicts an overview of these approaches and labels the corre-
sponding research questions. Regarding H1, we would like to study and compare
the expressiveness of different types of constraints in different data models. Espe-
cially, we are interested in methods to implement FDs within SHACL. Since FDs
target several nodes at the same time, it is only possible to express FDs using
SPARQL-based constraints (sh:sparql) in SHACL, which are time consuming
to execute. Instead, our approach will analyze the given FDs and generate G+

where groups of target nodes are folded based on the attribute-value pairs to be
validated in the FDs. Then, our approach obtains the rewritten shapes graph
S+ by rewriting the SPARQL-based constraints as built-in SHACL constraints
against the folded nodes. These techniques will allow for checking FDs efficiently.

We are inspired to study H2 from works [19, 24, 25] and propose a rewriting
solution for shapes graphs to eliminate the redundancy in them. First, we will
present a method for detecting the redundant conditions in shapes graph with
and without entailment. Then, we will devise an approach to implement shapes
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rewriting to remove redundant conditions. In this way, our approach is able to
understand the relationships between shapes by reasoning and to integrate these
shape constraints into a more compact shapes graph S∗ to be validated.

We address the hypothesis H3 by presenting our approach, Re-SHACL. In-
stead of computing the closure G∗ (under an entailment regime) of the data
graph, Re-SHACL extracts relevant information from the shapes graph to iden-
tify the parts of the data graph for which the reasoning is applied to. To cope with
the nUNA, Re-SHACL implements a merging mechanism, where semantically
equivalent entities are consolidated into a single, unified representation in the
data graph G′. Because of this merging, Re-SHACL rewrites the shapes graph
to S ′ to replace the identifiers of the merged entities that occur in the shapes
graph. The combination of the targeted reasoning and the entity merging, allows
Re-SHACL to obtain concise, semantically enhanced data graphs, which can be
efficiently evaluated using any SHACL validator without entailment.

5 Evaluation Plan

We plan to theoretically and experimentally evaluate the proposed methods. To
provide theoretical guarantees for our methods, we will study their complex-
ity and prove their correctness. Regarding the experimental evaluation, we will
perform experiments and then analyze the results of different methods.

Benchmarks and Datasets. We will use synthetic data graphs (e.g., LUBM [13])
and real-world datasets (e.g., DBpedia [18] and Wikidata [31]). For the synthetic
dataset, we have the flexibility to control the size of the generated dataset when
synthesizing the database, which is helpful to fully analyze the effect of dataset
dimensions on the experimental results. Real-world datasets contain real data
obtained directly from real environments that do not follow the Unique Name
Assumption (UNA). Therefore, the real-world datasets provide an important
set up for assessing the studied methods. Regarding the shapes graphs, related
works [11, 27] have published some shapes graphs designed for the dataset we
have chosen. We will reuse and adapt these shapes graphs as much as possible.

Baselines. We will compare to approaches that support entailment regimes (e.g.,
pySHACL [29]), to measure the entailment regimes’ impact on runtime and the
number and type of violations that can be detected with reasoning. We will
also use off-the-shelf validators (e.g., [5, 6, 11]) to show how our techniques can
enhance the performance of state-of-the-art SHACL validators.

Metrics. To measure the performance of our methods, we will use several evalu-
ation metrics, including the execution time of the approaches and the number of
violations in the validation report. In the studies that handle the shapes graphs
(i.e., for H1 and H2) we also report on metrics about the shapes graph and the
rewritten shapes graph, such as the number of shapes and number of property
constraints in the graph. For the methods of enhancing data graphs (i.e., H3),
we will also consider the metrics of generation time of the materialized graphs
and their size. Studying these metrics helps us to better analyze the results of
experiments, and to investigate which factors affect validation performance.
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Fig. 3. Preliminary results over LUBM datasets using three shapes graphs.

6 Preliminary Results

(a) (b)

Fig. 4. Preliminary results over DBpedia
subsets with real-world shapes graphs: (a)
Runtime (reasoning + validation). (b) Anal-
ysis of validation reports for the DBpedia
subset EnDe-50. These values reflect how
many violations appeared in the report Ry

in the approach of the y-axis but not in the
report Rx in the approach of x-axis.

We have delved into H3 and pro-
pose Re-SHACL, an approach based
on materialization and shape rewrit-
ing that considers the targets in the
shapes to carry out targeted reason-
ing and merging to perform efficient
validation with OWL LD entailment
regime [12]. It follows a hybrid strat-
egy with two main novelties: (i) it
is tailored to entailment regimes and
mitigates the undesired results ob-
tained due to reflexive properties de-
fined in RDFS and OWL and due to
the nUNA followed in data graphs;
and (ii) our shapes graph rewritings
correspond to simple substitutions,
which makes our solution efficient.

We conducted experiments using six synthetic datasets LUBM generated by
Figuera et al. [11] and three real-world subsets obtained from DBPedia. We
use pySHACL as the validator for Re-SHACL, and compare to pySHACL with
no/RDFS/OWL 2 RL entailment. Fig. 3 and Fig. 4(a) show the runtimes. Clearly
the fastest approach is pySHACL without entailment. Re-SHACL exhibits a con-
siderably lower runtime than pySHACL-RDFS in most configurations, despite
that OWL LD reasoning (implemented by Re-SHACL) is more expressive than
RDFS. In comparison to pySHACL-OWL, Re-SHACL is orders of magnitude
faster in all datasets, especially in DBpedia. The LUBM results show that the
runtime is affected by both the data and shapes graphs.

Fig. 4(b) represents the difference between the validation reports obtained
with the different approaches. By analyzing the differences in the validation
reports, we draw the following conclusions: (i) Using reasoning can effectively
filter out numerous erroneous violations derived from the validation without
reasoning, and discover more meaningful violations. (ii) pySHACL-OWL and
pySHACL-RDFS exhibit a notable frequency of duplicated violations due to
their inability to appropriately manage nUNA during validation, leading to re-
dundancy within the entailment process. Conversely, Re-SHACL reports solely
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fundamental violations because it supports OWL entailment with entity merg-
ing, thereby eliminating the repetition of violation reports. (iii) When dealing
with reflexive properties, pySHACL-OWL may generate false positive violations
due to OWL entailment causing every individual e in the data graph to imply the
triple (e,owl:sameAs,e), which conflicts with sh:minCount and sh:maxCount

restrictions, leading to overlooked or incorrect validation outcomes.
Summarizing, our results show that Re-SHACL outperforms orders of mag-

nitude existing approaches that support RDFS and OWL entailment.

7 Conclusions

This doctoral thesis focuses on exploring how to validate RDF data efficiently
within the SHACL framework, considering entailment. We develop three hy-
potheses to tackle the pertinent research questions and outline an evaluation
strategy to assess these hypotheses’ viability. Initial findings for Hypothesis H3
indicate that our introduced approach, Re-SHACL, employing shape-based in-
ference and merging techniques, effectively supports entailment during valida-
tion. This preliminary result affirms our direction and gives us confidence in the
ongoing research related to H1 and H2.

Future work for H3 involves enhancing the method to support OWL 2 RL
and advanced features in SHACL. Our subsequent focus will be on examining
the other two hypotheses, H1 and H2. Finally, we will discuss how to integrate
the solutions derived from all three hypotheses to optimize validation efficiency.
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