
Hybridization of Description Logics and Logic
Programming

Arun Raveendran Nair Sheela⋆,1,2,

1 Clermont Auvergne University, France
2 Thales Group

Arun.RAVEENDRAN_NAIR_SHEELA@doctorant.uca.fr
arun.raveendran-nair-sheela@thalesgroup.com

Abstract. Thales3 aims to develop a virtual assistant to support pilots
during flights, with a central component being the knowledge base. This
knowledge base is built using a knowledge representation(KR) and rea-
soning system, encompassing various knowledge types including static
and dynamic. However, existing KR systems present some limitations
which include expressiveness and reasoning performance. The problem
of expressiveness can be addressed by integrating two distinct KR con-
cepts: Rules and Ontologies.
Ontologies offers a framework for formalizing concepts, properties, and
relationships, whereas rules express knowledge through IF-Then con-
structs. Integrating these approaches enriches knowledge representation
and reasoning systems in many ways and helps to achieve complete-
ness. However, this integration poses challenges, such as the difficulty of
aligning their semantics and addressing issues of decidability. This thesis
focuses on defining a methodology to combine rules and ontologies to
overcome these challenges and build an optimized reasoner to execute
the reasoning tasks of the virtual assistant ensuring good performance.

Keywords: Description Logic · Rules · Logic Programming · Hybrid
Knowledge Base .

1 Introduction
Artificial Intelligence(AI) exhibits various applications in the aviation industry
such as virtual assistants. Deploying a virtual assistant during flights enhances
pilot proficiency and ensuring the seamless execution of flight operations. In
this context, Thales plans to construct a virtual assistant using a symbolic AI
system, which falls under the domain of AI. The entirety of information within
the virtual assistant is systematically represented in its knowledge base using a
KR language. Utilizing this knowledge base with other components, the virtual
assistant guides pilots through the execution of varied tasks, facilitated by a
sophisticated reasoner.

Some use cases of this virtual assistant include fault detection and trou-
bleshooting, providing suggestions to pilots for improving flight performance,
⋆ Early Stage Ph.D - Work Started From September 2023.
3 https://www.thalesgroup.com/

https://orcid.org/0009-0005-7260-8212


2 Arun Raveendran Nair Sheela

answering queries, and assisting in the decision-making process during critical
situations. To execute these use cases, knowledge engineers represent contextual
information along with instantaneous knowledge such as flight machinery data,
meteorological data, and information from air traffic controllers in the knowl-
edge base. This knowledge can be classified into three different types: static
knowledge, which remains unchanged during flight; dynamic knowledge with in-
frequent updates and dynamic knowledge with periodic updates which changes
during flights.

For the effective construction of a knowledge base, essential features include
the Closed-World Assumption(CWA) means assuming false if something cannot
be derived as true, beneficial for tasks like representing a list of airports, and the
Open-World Assumption(OWA) means no conclusions is made from the absence
of information, useful for use cases related to weather information. Also, we need
to represent some procedural rules that help with fault detection and rectifica-
tion. Additionally, Non-monotonic Reasoning, entails that new knowledge will
invalidate the previously drawn conclusion, is required to perform reasoning over
dynamic knowledge, which changes over time. A comprehensive solution to in-
clude all these features is to integrate two major KR concepts: Ontologies and
Rules.

Ontologies are structured representations of knowledge within specific do-
mains, that defines the type of entities that exist,properties that can be used
to describe them, and relationships among those[28]. Description Logic(DL)s, a
decidable variant of first-order logic is a widely accepted ontology language[1].

Rules capture knowledge about the world by expressing the IF-Then rela-
tionship, There are many varieties of rule languages. But in general, they can be
divided into Production systems and Logic Programming(LP) systems[9]. Pro-
duction systems express knowledge using conditional statements with a specific
control flow and the Logic Programming system uses a declarative style which
means modelling what should be achieved instead of how to achieve it.

LP and DLs have many distinct features. So combining both approaches will
enhance the capabilities of a knowledge representation and reasoning system.
In [27], define several benefits of LP over DLs. LP facilitates the representation
of non-tree-like relationships, offering a more flexible and dynamic approach
to expressing complex connections within a knowledge domain and operates
under the CWA and is non-monotonic. N-ary predicates , ability to represent
integrity constraints, and exception modeling are some of the other benefits of
LP. Furthermore, the availability of highly optimized reasoners enhances the
efficiency of reasoning processes.

Contrarily, DLs offers a rich set of constructors for complex entity connec-
tions and allow reasoning over abstract relationships without requiring concrete
instances, known as Terminological Reasoning. Reasoning with DL is based on
OWA and it is monotonic which means new knowledge doesn’t invalidate the
previously drawn conclusion. Various DLs can be defined based on the com-
bination of different constructors offering flexibility to choose a language that
matches the required expressivity. Moreover, DLs enable Open-domain Reason-



Hybridization of Description Logics and Logic Programming 3

ing, accommodating an infinite number of anonymous individuals within their
reasoning framework.

Overall, LPs are suited for data-centric reasoning tasks like query answering,
while DLs stand out for their terminological reasoning capabilities and hierar-
chical representation style. Despite the benefits, there are several challenges we
need to face while combining DLs and LP due to inherent differences in the
semantics of both approaches [13],[31]. This includes managing default assump-
tions such as CWA and OWA, monotonicity, treatment of equality, domain, and
negation choices(Weak Negation for LP and Explicit Negation for DLs). Fur-
thermore, decidability is another concern during this reconciliation. However,
several works are being published that address the aforementioned challenges
and give solutions to solve them(explained in section 2.3).

2 State of the Art
This section is split into three parts, covering the languages and reasoners for
LP systems and DLs separately, and also delving into works that combine both
approaches.

2.1 Reasoning in Description Logics

The current standard for ontologies is the Web Ontology Language(OWL),
rooted in DLs. OWL offers a range of variants offering diverse constructors,
each with distinct computational complexities tailored for specific use cases. At
one end, there’s the most expressive variant, OWL Full[34], allowing for rich
and complex modeling but undecidable, OWL 2 introduced more tractable vari-
ants, such as OWL 2 RL (Rule Language), OWL 2 EL (Existential Language),
and OWL 2 QL (Query Language)[6]. Listing 1.1 defines a small Description
Logic(DL) with a Terminological Box(TBox) that delineates the abstract rela-
tionship among classes and properties, and an Assertional Box(ABox) specifies
instances of these classes and properties. Equivalent OWL syntax of this is men-
tioned in Listing 1.2.

Listing 1.1. Example DL ontology
<!-- Axioms/Terminological Box/TBox -->
TBox = {Parent subClass Human }.
<!-- Assertional Box/ABox/Instances -->
ABox = {Parent(individual_a )}.
#Reasoning Tasks
<!– Subsumption Checking –>
?- subClass(Human,Parent). - Result: Yes.
<!– Instance Checking –>
?- Human(individual_a). - Result:Yes.
<!– Instance Retrivel –>
?- Human(X). - Result:individual_a.

Listing 1.2. Equivalent OWL Syntax
<!-- Axioms/Terminologies/TBox -->
<owl:Class rdf:about ="# Human"/>
<owl:Class rdf:about ="# Parent">

<rdf:subClassOf rdf:resource ="# Human"/>
</owl:Class >
<owl:Class rdf:about ="# Father">

<rdf:subClassOf rdf:resource ="# Parent"/>
</owl:Class >
<!-- Assertions/ABox/Instances -->
<owl:NamedIndividual rdf:about ="# individual_a">

<rdf:type rdf:resource ="# Human"/>
</owl:NamedIndividual >

In OWL languages, key reasoning tasks include consistency checking ensures
logical coherence, instance checking verifying individual membership in specified
concepts, subsumption checking for assessing concept hierarchy relationships and
instance retrieval involves extracting relevant instances based on defined cri-
teria. Several DL reasoning methodologies, such as Tableau-based algorithms,
Classification, Rule-based DL reasoning, First-order Theorem prover-based DL
reasoning, and DLE framework-based reasoning, are commonly employed to ex-



4 Arun Raveendran Nair Sheela

ecute the mentioned reasoning tasks. Tableau-based reasoning is a method that
constructs proof trees to ascertain the consistency of DL ontologies employed
by well-known reasoners such as Pellet[15] and HermiT[35]. ELK is a reasoner
that utilizes classification, the process of determining the subsumption relation-
ships between concepts within an ontology by applying inference rules[43]. Addi-
tional reasoning methods include rule-based DL reasoners by taking advantage
of rule engines to perform efficient reasoning over very large ABox(RDFox), by
using first-order theorem provers(Surnia[18], Hoolet[3] using Vampire Theorem
Prover) and Description Logic Entailement(DLE) framework by combining the
benefits of tableau algorithm for effective TBox reasoning and rule engines for
ABox reasoning[26](DLE-Jena).

2.2 Reasoning in Logic Programming

Different LP systems include Answer Set Programming (ASP)[24], General Logic
Programming[33], F-logic[21], and Constraint Logic Programming[38]. Notably,
these declarative languages primarily focus on query answering as the principal
reasoning task, except ASP, which encompasses tasks such as brave and cautious
reasoning, and answer set checking. ASP focuses on generating answer sets, while
other languages often utilize a backward chaining approach, attempting to prove
the query by tracing back from known evidence. For General Logic Programming,
reasoning engines such as SWI-Prolog, XSB Prolog, and B-prolog are commonly
employed. In ASP, dedicated reasoning engines such as Clingo, DLV, S-Models
and F-logic rely on engines like Florid and Flora2.

2.3 Combining DLs and LP System

Numerous research endeavours have explored the amalgamation of DLs and LP,
leading to a categorization of below integration methods based on the intended
semantics of the combined language, its expressivity, and the nature of the in-
teraction between them. Broadly, the integration strategies can be distilled into
two overarching approaches based on the semantics of the integrated languages:
the Homogeneous Approach and the Hybrid Approach[14],[11].

Homogeneous Integration utilized a unified language with a single se-
mantics that embedded both DLs and rules. Based on the expressivity, we can
further classify Homogeneous integration into monotonic and quasi-monotonic
approaches (also called Full Integration or Embedding Approach).

Monotonic approach is mainly focused on first-order semantics and em-
ploys only open-world assumption. Semantic Web Rule Language(SWRL)[20], a
union of DLs and Horn Logic is considered as a language of this approach. But
in general, SWRL is considered undecidable, so various tractable forms were
invented which include Description Logic Program(DLP)[4], Description Logic
Rules[22], DL Safe Rules[22], and Existential Logic Program(ELP)[22]. There
are mainly three ways to construct a reasoner for this approach: using a first-
order theorem prover, an OWL reasoner, or a rule engine. In all these cases, we
need to use a translator to convert either rules or DLs or both to the language
accepted by the reasoner.



Hybridization of Description Logics and Logic Programming 5

Quasi-monotonic approach extends the above approach by adding non-
monotonic features by utilizing the extensions of first-order logics such as cir-
cumscription, default logic, and defeasible logic. In this approach, both open-
world and closed-world assumptions are employed to execute the reasoning tasks.
MKNF+[7] and Hybrid MKNF[25], based on auto-epistemic logic and DR-logic[5]
based on defeasible logic are some of the existing languages for this approach.
Also, open-answer set[36] and first-order stable model semantics[29] can serve
as unifying logic system to embedded both LP and DLs. Some works includes
Extended Forest Logic Program and Guarded Hybrid Knowledge base[19] can
illustrate this. We can construct a reasoner for this approach by using meta pro-
gramming with a rule engine to guarantee the semantics of the language. NoHr
Reasoner is a query answering tool based on Hybrid MKNF, which uses XSB
Prolog as the backend and uses a direct translator for OWL to LP conversion[41].
NoHr supports the tractable forms of OWL such as OWL 2 RL, OWL 2 EL, and
OWL 2 QL. Also, there exists a prototype implementation of DR-Prolog, which
uses the same XSB Prolog as backend.

In Hybrid Integration, two distinct semantics coexist, one dedicated to
DLs and the other tailored to LP. Based on how DL and LP interact, we
can further classify the hybrid integration into two types, Loose and Tight
Integration[12].

In Loose Integration, the DL and LP components are treated as distinct
entities that share knowledge by exchanging the logical consequences derived
from each other. DL-Program employs loose integration that use DL queries in
the body of the rules that interact with the DL component[40]. Several imple-
mentations such as NLP-DL[39], a web interface using Racer and DLV, DReW
System[17] utilizing DLV and DL to LP translator and F-Logic#[37] appointing
onto-broker engines(both f-logic and DL), are built on DL-programs. DLV-Hex,
built upon the Hex system, can also be regarded as a reasoner for DL-Programs."

In Tight Integration, the interaction between LP and the DL part occurs
at the level of the semantics of both components. In this approach, a shared
model for both LP and DL is established and computed by deriving a model for
DL under first-order semantics. Subsequently, the model of LP is computed by
employing either well-founded semantics or stable-model semantics after elim-
inating the DL atoms by utilizing the initially derived DL model. So for each
DL model, there exists a corresponding LP model. DL-Log under stable model
semantics[30] and HD-Rules under well-founded semantics[42] are some of the
existing languages that use tight integration. Also, there exists a prototype rea-
soner for HD-Rules as a web interface that uses Pellet and XSB Prolog as the
backend. Additionally, there is an extension for DL-Log called Clopen knowledge,
which introduces the capability to employ CWA within DLs[23].

In addition to this, within Hybrid Integration, there is a third approach
that blends the characteristics of loose and tight coupling which can be called
Flexible Integration. Resilient Logic Program is an example of this kind of
approach[32].



6 Arun Raveendran Nair Sheela

3 Problem Statement
The prerequisites for the deployment of a Semantic Web system are explained
in [8]. Essential components include declarative rules, enabling the generation of
new data from pre-existing datasets, integrity constraints to ensure data consis-
tency, ontologies for defining concepts and their interrelations, and procedural
rules, which specify how the data can be modified depending on the current
state. Furthermore, we need monotonic and non-monotonic negation.

The Monotonic approach, while a straightforward methodology, lacks certain
features such as non-monotonic negation and integrity constraints. DL-program
and DL+Log cannot express integrity constraints[10], reactive rules and cannot
express CWA inside DLs. While DLV-Hex, a reasoner for Hex language, offers
the capability to express reactive rules through external plugins(for example,
using a Python plugin). However, its efficiency diminishes with larger knowledge
bases due to inherent architectural constraints. Moreover, quasi-monotonic ap-
proaches like MKNF, though promising, present challenges. But the semantics
of such approaches are difficult for knowledge engineers to grasp. Also, we need
syntactic restrictions and limit the expressivity to build a practical reasoner due
to decidability issues. So the pursuit of a practical reasoner with the aforemen-
tioned functionalities remains ongoing, signifying a critical area for advancement
in semantic web systems.

Our objective is to develop a practical reasoner that not only incorporates the
aforementioned features but also addresses additional requirements needed for
the virtual assistant. To guide our research efforts effectively, we have formulated
the following research question, delineating the specific areas under investigation:

RQ1 - How to combine DLs with LP system? This research question will
be addressed by exploring four sub-research questions defined below:

RQ1.1 - What functional and non-functional requirements does the
application domain expect from the integrated KR system?
Functional requirements address expressivity, information flow, the
default assumptions for a rule, and DL predicates, emphasizing the-
oretical aspects. Non-functional requirements define characteristics
such as query-answering performance, scalability, efficiency, and real-
time reasoning performance, predominantly at the reasoner imple-
mentation level.

RQ1.2 - Which kind of knowledge is better suited for modelling with
DL, conversely, which one is more effectively represented
through LP? Carefully evaluating specific criteria is crucial when
deciding whether to employ rules, Description Logic (DL), or both
to model a particular use case.

RQ1.3 - What are the existing methods to integrate DLs with LP?
For each method, answer the two sub-research questions defined be-
low:

RQ1.3.1 - Any implementations are available?
RQ1.3.2 - Will this approach satisfy all the needed requirements?



Hybridization of Description Logics and Logic Programming 7

RQ2 - How to define the semantics of a language that integrates LP
and DL to fulfil the functional requirements of this applica-
tion domain? The answer to this research question depends upon
RQ1(specifically, SRQ3) to identify or invent suitable semantics to com-
bine LP and DL. This research question also aims to study the decid-
ability and tractability of the language and discusses the constraints to
enable it.

RQ3 - How to perform essential reasoning tasks such as query an-
swering? This question aims to build a reasoner that adheres to the
defined declarative semantics of the language.

RQ3.1 - What architecture and algorithms are most appropriate for
this? Two approaches exist for constructing a reasoner for the in-
tegrated language: a single rule reasoner or a coupled two-reasoner
setup. And when it come to algorithms, options include there for-
ward chaining and backward chaining systems. So identifying an
effective methodology to construct the reasoner is pivotal.

RQ3.2 - Is it possible to utilize existing tools for implementation,
and if so, which one is the most suitable? Identifying the most
efficient tool for implementing the operational semantics to execute
the required reasoning task.

RQ3.3 - How to optimize the execution of reasoning tasks to achieve
optimal results? Optimization techniques at both the algorithmic
and implementation levels are explored to meet the non-functional
requirements of the application domain.

4 Research Methodology

This research is structured into three distinct phases to address the aforemen-
tioned research questions: the State of the Art Phase, Experimentation Phase,
and Evaluation phase. The objective of the state-of-the-art phase is to explore
existing methods that combine LP and DLs. This includes grasping the theory
behind each approach and testing them at both theoretical and practical levels
to uncover any limitations with respect to the functional requirements of the
virtual assistant. Subsequently, we aim to pinpoint necessary improvements to
enhance these approaches to meet the requirements of a virtual assistant. During
the experimentation phase, we leverage insights from the previous stage to devise
a methodology that addresses the identified limitations. This involves construct-
ing an optimized reasoner obeying non-functional requirements. Finally, in the
evaluation phase, we conduct a thorough comparison between our methodology
and existing approaches to validate whether our objectives have been met. This
rigorous evaluation ensures that our proposed methodology satisfies the needs
of the virtual assistant effectively.

5 Evaluation Plan

We need to evaluate the result of this thesis theoretically by implementing the use
cases to ascertain the fulfilment of the functional requirements. Key parameters



8 Arun Raveendran Nair Sheela

for assessment include Expressivity(as described in section 3), Information
Flow, Domain, and Negation choices for DL and LP Predicates. As
requirements evolve, additional parameters will be integrated.

Besides this, we need a quantitative evaluation to analyze the non-functional
requirements. We decided to use existing OWL benchmarks incorporating a rule
base with it.To do the initial testing, we utilize OWL2Bench, a dataset capable
of generating a DL knowledge base and an extension of University Ontology
Benchmark (UOBM) with a TBox encompasses four OWL languages(OWL 2
RL, OWL 2 QL, OWL 2 EL, OWL 2 DL) with all possible constructors and
an ABox generator of variable size[16]. Selected parameters to evaluate non-
functional requirements include Query Answering Performance, Scalabil-
ity, Query Result Comparison using the Jaccard Similarity index[2], Real-
time Reasoning Performance and Timeliness, and Efficiency. If existing
benchmarks prove inadequate, there is a plan to develop an in-house benchmark
that integrates both DL and LP to perform the evaluation.

6 Preliminary Result

Answering RQ1.1, the functional requirement involves defining a Knowledge
Representation language capable of expressing various virtual assistant use cases,
where certain scenarios require evaluation under an open-world assumption and
others under a closed-world assumption. Additionally, there is a need for bidirec-
tional information exchange between these cases. Also, the KR system must be
able to capture and reason with the real-time data generated in flight. However,
additional requirements including expressivity and specific reasoning tasks re-
quired for operational use-cases of the virtual assistant are yet to be defined.Also,
the reasoner must be capable of providing explanations regarding how inferences
are derived. Addressing non-functional requirements, the KR system must ex-
hibit good reasoning performance, scalability, real-time reasoning capabilities,
and efficiency in terms of resource consumption. RQ1.3 is addressed in section

Homogeneous -
Monotonic

Homogeneous -
Quasi-Monotonic

Hybrid -
Loose Integration

Hybrid -
Tight Integration

First-order(FO)
Semantics

FO Non-Monotonic
Semantics

DL under FO
Semantics, Rules

under NM semantics

DL under FO
Semantics, Rules

under NM semantics

Intralingual Intralingual Logical
Consequences Model-Based

Only OWA OWA and CWA for
Rules and DL atoms

OWA for DL atoms,
CWA for Rule atoms

OWA for DL atoms,
CWA for Rule atoms

Both rule and
DL atoms are open

Open and closed
atoms are allowed

in both rules and DL

DL atoms are open,
Rule atoms are closed

DL atoms are open,
Rule atoms are closed

SWRL Hybrid MKNF DL-Program DL-Log, HD-Rules

Table 1. Different ways to integrate Rules and DL

2.3 and Table 1 illustrates the general features of methods to combine LP and
DLs (Row 1) , including semantics (Row 2), the interaction between LP and DL



Hybridization of Description Logics and Logic Programming 9

components (Row 3), default assumptions (Row 4), the domain consideration
(Row 5), and a review of existing works (Row 6).

We planned to start working with a Loose integration approach, which is a
very simple way to integrate LP and DLs. DL-program which is a promising
work based on loose integration and also, there are some prototype reasoners
available. Test them to understand their limitations, and subsequently decide on
improvements or explore alternative integration types.

7 Conclusion and Future Work
In the above sections, we outlined our research plan to execute this thesis and
provided an overview of our initial results. As a first step, we identified the initial
requirements needed for this application domain and identified existing methods
to combine LP and DLs. From the list, we choose one method for studying and
Our chosen framework is the program.

Our next step is to perform evaluations on DL-program concerning identified
functional and non-functional requirements. Then recognize the improvement
needed for the approach to apply in this context or consider pursuing an al-
ternative approach. Also, illustrate a protocol for knowledge engineers to select
either LP or DL while modelling a use case.
Acknowledgments. This research is jointly funded by Thales and National As-
sociation of Research and Technology(ANRT),France. I express my sincere thanks
to my supervisors: Christophe REY(Clermont Auvergne University), Florence DE
GRANCEY(Thales), Victor CHARPENAY(Ecole des Mines de Saint-Ãtienne), and
Farouk TOUMANI(Clermont Auvergne University) for their guidance and assistance
thus far.

References

1. The Description Logic Handbook: Theory, Implementation and Applications
2. Jaccard index. https://en.wikipedia.org/wiki/Jaccard_index
3. Bechhofer, S.: Hoolet (2003), https://owl.man.ac.uk/hoolet/
4. Benjamin Grosof., e.a.: Description logic programs: combining logic programs with

description logic. In: The Web Conference (2003)
5. Bikakis Antonis., e.a.: The dr-prolog tool suite for defeasible reasoning and proof

explanation in the semantic web. pp. 345–351 (2008)
6. Boris Motik., e.a.: Owl 2 web ontology language profiles. In: W3C Recommendation

(11 December 2012), https://www.w3.org/TR/owl2-profiles/
7. Boris Motik., e.a.: Reconciling description logics and rules 57, 30–62 (2010)
8. Bry, F., Marchiori, M.: Reasoning on the semantic web: Beyond ontology languages

and reasoners. pp. 317 – 321 (01 2005). https://doi.org/10.1049/ic.2005.0749
9. Crina Grosan., e.a.: Chapter 7 - Rule Based Expert System, pp. 149–181. https:

//doi.org/10.1007/978-8-642-21004-4
10. Cruz-Filipe, L., Nunes, I., Engrácia, P., Gaspar, G.: Achieving tightness in dl-

programs (2012), https://api.semanticscholar.org/CorpusID:57065463
11. Drabent odzimierz., e.a.: Hybrid Reasoning with Rules and Ontologies (2009)
12. Drabent WÅodzimierz., e.a.: Hybrid Reasoning with Rules and Ontologies, pp.

1–49 (2009)
13. Eiter Thomas., e.a.: Rules and Ontologies for the Semantic Web, pp. 1–53 (2008).

https://doi.org/10.1007/978-3-540-85658-0_1

https://en.wikipedia.org/wiki/Jaccard_index
https://owl.man.ac.uk/hoolet/
https://www.w3.org/TR/owl2-profiles/
https://doi.org/10.1049/ic.2005.0749
https://doi.org/10.1049/ic.2005.0749
https://doi.org/10.1007/978-8-642-21004-4
https://doi.org/10.1007/978-8-642-21004-4
https://doi.org/10.1007/978-8-642-21004-4
https://doi.org/10.1007/978-8-642-21004-4
https://api.semanticscholar.org/CorpusID:57065463
https://doi.org/10.1007/978-3-540-85658-0_1
https://doi.org/10.1007/978-3-540-85658-0_1


10 Arun Raveendran Nair Sheela

14. Eiter Thomas., e.a.: Rules and ontologies for the semantic web. vol. 5224, pp. 1–53
(2008). https://doi.org/10.1007/978-3-540-85658-0_1

15. Evren Sirin., e.a.: Pellet: A practical owl-dl reasoner. Journal of Web Semantics
16. Gunjan Singh., e.a.: Owl2bench: A benchmark for owl 2 reasoners. In: International

Workshop on the Semantic Web (2020)
17. Guohui Xiao., e.a.: The drew system for nonmonotonic dl-programs. In: China

Semantic Web Symposium (2012)
18. Hawke, S.: Surnia. In: W3c page (2003), https://www.w3.org/2003/08/surnia/
19. HEYMANS, S.e.a.: Guarded hybrid knowledge bases 8
20. Ian Horrocks., e.a.: Semantic web rule langauge. In: W3C (21 May 2004)
21. Kifer, M., Lausen, G.: F-logic: a higher-order language for reasoning about objects,

inheritance, and scheme. In: ACM SIGMOD Conference (1989)
22. Krotzsch, M.: Description logic rules. In: Phd thesis (2010)
23. Labinot Bajraktari., e.a.: Combining rules and ontologies into clopen knowledge

bases. AAAI Conference on Artificial Intelligence (2018)
24. Lifschitz, V.: Answer set programming. Answer Set Programming (2019), https:

//api.semanticscholar.org/CorpusID:61146927
25. Matthias Knorr., e.a.: Local closed world reasoning with description logics under

the well-founded semantics. Artificial Intelligence 175(9), 1528–1554 (2011)
26. Meditskos., e.a.: Combining a dl reasoner and a rule engine for improving

entailment-based owl reasoning. In: The Semantic Web - ISWC 2008
27. Motik Boris., e.a.: Can owl and logic programming live together happily ever after?

In: The Semantic Web - ISWC 2006. pp. 501–514
28. NEUHAUS, F.: On the Definition of Ontology, pp. 1–10 (Proceedings of the Joint

Ontology Workshops 2017)
29. Paolo Ferraris., e.a.: Stable models and circumscription (2011)
30. Rosati, R.: Dl+log: Tight integration of description logics and disjunctive datalog.

pp. 68–78 (01 2006)
31. Rosati Riccardo., e.a.: Integrating Ontologies and Rules: Semantic and Computa-

tional Issues, pp. 128–151. https://doi.org/10.1007/11837787_5
32. Sanja Lukumbuzya., e.a.: Resilient logic programs: Answer set programs challenged

by ontologies. In: The Thirty-Fourth Conference on Artificial Intelligence 2020
33. Schulze, J.: Handbook of logic in artificial intelligence and logic programming

(2016), https://api.semanticscholar.org/CorpusID:63249517
34. Sean Bechhofer., e.a.: Owl 2 web ontology language profiles. In: W3C Recommen-

dation (10 February 2004), https://www.w3.org/TR/owl-ref/
35. Shearer Rob., e.a.: Hermit: A highly-efficient owl reasoner. vol. 432 (01 2008)
36. Stijn Heymans., e.a.: Open answer set programming for the semantic web. Journal

of Applied Logic
37. Stijn Heymans., e.a.: F-logic: Loosely coupling f-logic rules and ontologies. 2010

IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology 1, 248–255 (2010)

38. Thom W. Frhwirth., e.a.: Constraint logic programming - an informal introduction.
In: Logic Programming Summer School (1992)

39. Thomas Eiter., e.a.: Nlp-dl (2007), https://www.mat.unical.it/ianni/swlp/
40. Thomas Eiter., e.a.: Combining answer set programming with description logics

for the semantic web. Artificial Intelligence 172(12), 1495–1539 (2008)
41. Vedran Kasalica., e.a.: Nohr: An overview. Artificial Intelligence pp. 1–7 (2020)
42. WÅodzimierz Drabent., e.a.: Hd-rules: A hybrid system interfacing prolog with

dl-reasoners. In: Applications of Logic Programming to the Web (2007)
43. Yevgeny Kazakov ., e.a.: Elk reasoner: Architecture and evaluation. In: Interna-

tional Workshop on OWL Reasoner Evaluation (2012)

https://doi.org/10.1007/978-3-540-85658-0_1
https://doi.org/10.1007/978-3-540-85658-0_1
https://www.w3.org/2003/08/surnia/
https://api.semanticscholar.org/CorpusID:61146927
https://api.semanticscholar.org/CorpusID:61146927
https://doi.org/10.1007/11837787_5
https://doi.org/10.1007/11837787_5
https://api.semanticscholar.org/CorpusID:63249517
https://www.w3.org/TR/owl-ref/
https://www.mat.unical.it/ianni/swlp/

	Hybridization of Description Logics and Logic Programming

